Deterioration of Trabecular Architecture in Hypogonadal Men

MARIA BENITO, BRYON GOMBERG, FELIX W. WEHRLI, RICHARD H. WEENING, BABETTE ZEMEL, ALEXANDER C. WRIGHT, HEE KWON SONG, ANDREW CUCCHIARA, AND PETER J. SNYDER

Departments of Medicine (M.B., P.J.S.), Radiology (B.G., F.W.W., R.H.W., A.C.W., H.K.S.), and Bioengineering (B.G.), University of Pennsylvania; General Clinical Research Centers (B.Z.), Children’s Hospital of Philadelphia; and Hospital of the University of Pennsylvania (A.C.), Philadelphia, Pennsylvania 19104

Bone strength depends on trabecular architecture, characterized by interconnected plates and rods. In osteoporosis, the plates become fenestrated, resulting in more rods that deteriorate and become disconnected. In men, hypogonadism is a common cause of osteoporosis. To determine whether male hypogonadism affects trabecular architecture, we selected 10 men with severe, untreated hypogonadism, and for each hypogonadal man, we selected a eugonadal man matched for race and age. Trabecular architecture in the distal tibia was assessed by magnetic resonance microimaging. Two composite topological indices were determined: the ratio of surface voxels (representing plates) to curve voxels (representing rods), which is higher when architecture is more intact; and the erosion index, a ratio of parameters expected to increase upon architectural deterioration to those expected to decrease, which is higher when deterioration is greater. The surface/curve ratio was 36% lower (P = 0.004), and the erosion index was 36% higher (P = 0.003) in the hypogonadal men than in the eugonadal men. In contrast, bone mineral density of the spine and hip were not significantly different between the two groups. We conclude that male hypogonadism is associated with marked deterioration of trabecular architecture and to a greater degree than bone densitometry of the spine and hip suggests. (J Clin Endocrinol Metab 88: 1497–1502, 2003)
Subjects and Methods

Subjects

Each subject gave written informed consent to a protocol that was approved by the Offices of Regulatory Affairs at the University of Pennsylvania and Children's Hospital of Philadelphia.

We selected 10 untreated hypogonadal men and 10 matched eugonadal men from among men ages 18–80 yr. The hypogonadal men were selected from the Endocrinology practice of the University of Pennsylvania on the basis of a serum testosterone concentration of less than 8.7 nmol/liter at 0800–1000 h on two occasions. All 10 men had secondary hypogonadism. One man had the prepubertal onset of hypogonadism, and the other nine had postpubertal onset (Table 1). The one man who had the prepubertal onset had been treated with testosterone beginning at age 15 yr for 10 yr and then discontinued it for 20 yr. The other subject who had been treated with testosterone previously had discontinued it for approximately 5 yr. The estimated duration of hypogonadism was more than 2 yr in all of the subjects. Four men had been diagnosed as having deficiencies of T₄ and/or cortisol; three were stably replaced (Table 1).

For each hypogonadal man, we selected a eugonadal man, recruited through advertisements in local media, matched to the hypogonadal man for race and for age within ± 10 yr, whose serum testosterone concentration was greater than 10.4 nmol/liter at 0800–1000 h on two occasions and whose bone mineral density at L₁–L₄ was within the mean ± 2 sd for his age. Men were excluded from both groups if they had been consuming less than 750 mg of calcium per day as determined by a food frequency questionnaire. One man in the hypogonadal group was taking phenytoin sodium; he was also taking vitamin D, and his serum concentration of 25-hydroxyvitamin D was midnormal. No other man in either group was taking any other medication, including high-dose glucocorticoids, or had any disease known to affect bone. No man in either group consumed an average of more than two alcoholic drinks a day. In the hypogonadal group, three smoked cigarettes at the time of the study, three smoked previously, and four never smoked. In the eugonadal group, the corresponding numbers were three, four, and three.

Bone mineral density

Bone mineral density was determined by dual energy x-ray absorptiometry using a Hologic QDR-4500A densitometer (Hologic, Inc., Bedford, MA) operating software version 9.80 D. Measurements were obtained of the spine in the anterior-posterior projection of L₁–L₄ and the right hip. The right side was used for densitometry because marks facilitates the precise location of the scan and analysis volume. Subjects were placed supine, feet first, into the scanner. The entire foot was immobilized using a Vacfix system placed around the lower foot and coil and secured to the gantry. The coil was placed on the anterior right tibia, using the alignment light of the scanner to place the distal edge of the coil 1 cm proximal to the midpoint of the medial malleolus.

The imaging protocol was similar to the one described for the distal radius (35). A series of axial localizer images was then acquired [field of view (FOV), 24 × 24 cm²; repetition time/echo time (TR/TE), 300 msec/14 msec; matrix size, 256 × 128; number of excitations (NEX), 0.75], from which the axial slice proximal to the distal tibia endplate was determined. From the chosen axial locator slice, sagittal high-resolution localizer images were prescribed across the entire width of the tibia. The image showing the most proximal cortical endplate was chosen to prescribe the fast large-angle spin echo (FLASE) three-dimensional image series (FOV = 7 × 5.25 cm²; TR/TE = 80 msec/9.7 msec; matrix = 512 × 384 square pixels; slice thickness = 410 μm, 32 slices; NEX = 1; flip angle = 140 degrees; scan time = 16.3 min). The distal boundary of the scan volume was located 8 mm from the distal cortical endplate of the tibia. The resulting acquisition voxel size was 137 × 137 × 410 μm³. A typical high-resolution localizer image of the distal tibia and one of the cross-sectional high-resolution images are shown in Fig. 1.

The data were processed, as previously described (38), using a custom-designed processing package written in IDL (Interactive Data Language, Boulder, CO). The first step involved motion correction, followed by filtering and Fourier transformation of the data to yield 28 contiguous images (2 images on each side of the volume were discarded; Ref. 39). The volume of interest was selected manually on each of the 28 images by tracing a line approximately 1 mm from the endocortical boundary on the anterior half of the distal tibial metaphysis. The next step was computation of bone volume fraction (the fraction of the imaging voxel occupied by bone) maps (40). Finally, the images were subjected to subvoxel processing (41) to yield a voxel size of 69 × 69 × 103 μm³.

Topological analysis of the trabecular network was performed on the entire volume of interest. The key step was the determination of the topological class of each image voxel. This process yielded the density of surface and curve voxels, as well as those that are part of mutual junctions. The topological analysis began with binarization of the three-dimensional images followed by skeletonization (36), which converted the platelike elements of the trabecular network to surfaces and the rodlike elements to curves. Each voxel was then classified as belonging to a curve, surface, or junction between these voxel types. In addition to the simple topological parameters, two composite parameters that have been found to be sensitive to bone loss (42) were calculated. One composite parameter was the surface/curve ratio, the ratio of all surface voxels to all curve voxels. The other parameter was the surface/curve ratio, the ratio of all surface voxels to all curve voxels. The higher the ratio, the more intact is the trabecular network, and vice versa. The second composite parameter was the erosion index, a ratio of parameters that are expected to increase upon trabecular deterioration (curve edge and curve interior voxels, surface and profile edge voxels, and curve-curve junction voxels) to those expected to decrease (surface interior voxels and surface-surface

TABLE 1. Clinical information about the hypogonadal men

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Age (yr)</th>
<th>Etiology of hypogonadism</th>
<th>Duration of hypogonadism (yr)</th>
<th>Prior T treatment</th>
<th>Other hormonal deficiencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31</td>
<td>Pinealoma</td>
<td>5</td>
<td>1 yr (5-4 yr ago)</td>
<td>T₄ and cortisol, both replaced</td>
</tr>
<tr>
<td>2</td>
<td>46</td>
<td>Kallmann’s syndrome</td>
<td>30</td>
<td>10 yr (30-20 yr ago)</td>
<td>T₄ and cortisol, both replaced</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>Lactotroph microadenoma</td>
<td>10</td>
<td></td>
<td>T₄ and cortisol, both replaced</td>
</tr>
<tr>
<td>4</td>
<td>52</td>
<td>Lactotroph microadenoma</td>
<td>5</td>
<td></td>
<td>T₄ and cortisol, both replaced</td>
</tr>
<tr>
<td>5</td>
<td>57</td>
<td>Nonfx pituitary macroadenoma</td>
<td>4</td>
<td></td>
<td>T₄ and cortisol, both replaced</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>Lactotroph microadenoma</td>
<td>2</td>
<td></td>
<td>T₄ (primary hypothyroidism), replaced</td>
</tr>
<tr>
<td>7</td>
<td>78</td>
<td>Lactotroph macroadenoma</td>
<td>5</td>
<td></td>
<td>T₄ and cortisol, not replaced</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>Nonfx pituitary macroadenoma</td>
<td>6</td>
<td></td>
<td>T₄ and cortisol, both replaced</td>
</tr>
<tr>
<td>9</td>
<td>68</td>
<td>Nonfx pituitary macroadenoma</td>
<td>6</td>
<td></td>
<td>T₄ and cortisol, both replaced</td>
</tr>
<tr>
<td>10</td>
<td>41</td>
<td>Nonfx pituitary macroadenoma</td>
<td>10</td>
<td></td>
<td>T₄ and cortisol, both replaced</td>
</tr>
</tbody>
</table>

T₄, Testosterone; Nonfx, clinically nonfunctioning.

* Estimated duration of hypogonadism.
Fig. 1. Anatomic site of μMRI. Left, High-resolution sagittal image of the distal tibia. The rectangle encompasses the area from which data were collected. Right, One high-resolution cross-sectional slice through the tibia, aligned perpendicularly to the axis on the left, showing the trabecular architecture of the tibia. The circle shows the virtual bone biopsy core from which a three-dimensional projection image was derived. Two examples of three-dimensional projection images are shown in Fig. 2.

TABLE 2. Characteristics of the eugonadal and hypogonadal men

<table>
<thead>
<tr>
<th></th>
<th>Eugonadal men</th>
<th>Hypogonadal men</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td>Caucasian, 8</td>
<td>Caucasian, 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>African-American, 2</td>
<td>African-American, 2</td>
<td></td>
</tr>
<tr>
<td>Age (yr)</td>
<td>53.7 ± 13.2</td>
<td>53.1 ± 13.4</td>
<td>0.9</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>29.0 ± 5.6</td>
<td>30.3 ± 3.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Calcium intake (mg/d)</td>
<td>1084 ± 164</td>
<td>1175 ± 248</td>
<td>0.3</td>
</tr>
<tr>
<td>Serum IGF-I (pg/ml)</td>
<td>125 ± 32</td>
<td>100 ± 47</td>
<td>0.2</td>
</tr>
<tr>
<td>Serum estradiol (pg/ml (pmol/liter))</td>
<td>19.7 ± 3.4 (72 ± 12)</td>
<td>8.9 ± 4.5 (33 ± 17)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Serum testosterone [ng/dl (nmol/liter)]</td>
<td>522 ± 126 (18.1 ± 4.4)</td>
<td>88 ± 51 (3.1 ± 1.8)</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Results are given as mean ± sd. BMI, Body mass index.

Results

Characteristics of the hypogonadal and eugonadal men (Table 2)

The 10 hypogonadal and 10 eugonadal men, by design, were identical in racial composition and similar in mean age. They were also similar in mean body mass index and in calcium intake, which was normal. The mean serum IGF-I concentrations of the two groups were not significantly different. The mean serum estradiol concentration was significantly less in the hypogonadal men than in the eugonadal men. The mean serum testosterone concentration in the hypogonadal men was midnormal (18.1 ± 4.4 nmol/liter; range, 12.1–25.0 nmol/liter), and that in the hypogonadal men was severely subnormal (3.1 ± 1.8 nmol/liter; range, 0.9–5.7 nmol/liter).

Bone mineral density (Table 3)

Mean bone mineral density of the spine, at L1–L4, in the hypogonadal men was 16% less than in the eugonadal men, but the difference was not statistically significant. Differences in mean bone mineral density for the total hip and three regional hip sites between the two groups were also not statistically significant.

Trabecular architecture as determined by μMRI (Table 4)

The mean surface/curve ratio, which is the ratio of all surface voxels to all curve voxels and therefore is higher the more intact the bone, was 36% lower in the hypogonadal men than in the eugonadal men (P = 0.004). The mean erosion index, which is a composite ratio of topological parameters likely to increase to those likely to decrease when bone architecture deteriorates (see Subjects and Methods for a detailed definition) and is therefore higher the greater the deterioration, was 36% higher in the hypogonadal men than in the eugonadal men (P = 0.003). The bone volume fraction, which
of the eugonadal men. Figure 2 shows projection images of the distal tibias of a 31-yr-old Caucasian hypogonadal man (subject 1 in Table 1) and a 28-yr-old Caucasian eugonadal man. The trabeculae of the eugonadal man exhibit a normal, predominantly plate-like network that is well connected, whereas the trabeculae of the hypogonadal man exhibit a greater number of rod-like elements, which are significantly disconnected.

Discussion

Previous studies have clearly demonstrated the association of male hypogonadism with decreased bone mineral density, but no previous studies have directly examined the effect of hypogonadism on the architecture of bone in humans. Some histomorphometric studies of men chosen for study because they had osteoporosis included men who were also hypogonadal (8, 9, 43), but none of these studies compared men chosen because they were hypogonadal with men chosen because they were eugonadal.

In this study, we used the technique of μMRI to determine whether the trabecular architecture of men who have severe testosterone deficiency differs from that of eugonadal men matched for race and age. This technique permits quantitation of the degree to which trabecular plates (surfaces) have deteriorated to become rods (curves; Refs. 36–38), a change that characterizes osteoporosis (27, 44). We found that the surface/curve ratio at the distal tibia in the 10 hypogonadal men was 36% lower than that in the 10 eugonadal men, and, similarly, the erosion index in the hypogonadal men was 36% higher than that in the eugonadal men. Both of these differences were highly significant statistically, and both suggest much greater deterioration of trabecular architecture in the hypogonadal men. In contrast, there was not a statistically significant difference in bone mineral density of the spine and hip between the two groups.

The differences in architectural parameters between the hypogonadal and eugonadal men cannot be ascribed to differences in race, age, body mass index, calcium intake, or smoking because the two groups were quite similar in those parameters. It is also unlikely that the architectural differ-

![Fig. 2. Three-dimensional projection images of virtual bone biopsy cores of two men: a 28-yr-old, Caucasian eugonadal man (left) who was matched to a 31-yr-old, Caucasian hypogonadal man (right; subject 1 in Table 1). These images demonstrate the ability of the μMRI technique to discern individual trabeculae. Note the well connected, predominantly plate-like trabecular network of the eugonadal man on the left and the more disconnected, predominantly rod-like architecture of the hypogonadal man on the right.](jcem.endojournals.org)
ences between the two groups can be ascribed to hormonal differences other than those in gonadal steroids. Although four of the hypogonadal men had been diagnosed as having deficiencies of T4 and cortisol, these deficiencies were stably replaced in three of the four. GH deficiency can contribute to decreased bone mineral density, and although the mean IGF-I values did not differ significantly between the two groups, we cannot exclude the possibility that GH deficiency contributed to the architectural deterioration in a few of the hypogonadal subjects. By far, the greatest hormonal difference between the two groups was in the serum testosterone concentrations, midnormal in the eugonadal men and severely subnormal in the hypogonadal men. The dramatically lower serum testosterone concentration in the hypogonadal men than in the eugonadal men, therefore, strongly suggests that this deficiency was a major contributing factor to deterioration of trabecular architecture in the hypogonadal men.

Estradiol was also lower in the hypogonadal men than in the eugonadal men, but it is not possible to determine from the design of this study the degree to which testosterone deficiency affected bone directly compared with the degree to which it acted indirectly via conversion to estradiol. From previous studies, testosterone appears to affect bone both directly as an androgen and via conversion to estradiol. Human chondrocytes (45), osteoblast-like cells (46), and human bone (47) express the androgen receptor. Androgens, even those that are not aromatizable to estrogens, stimulate cell division (48), increase androgen receptors (49), and stimulate mineralization in human osteoblast-like cells (50). Bone cells also express estrogen receptors, and men who either express a mutated estrogen receptor (51) or who cannot aromatize testosterone to estradiol (52–54) have osteoporosis and lack epiphyseal closure. Estradiol appears to contribute more to prevention of bone resorption than testosterone, but both appear to contribute equally to bone formation (55).

The potential significance of the architectural consequences in these hypogonadal men is that they may result in bone being less mechanically competent and therefore more susceptible to fracture. Several studies demonstrate that bone mass, or density, accounts for only about 40–60% of the mechanical strength of bone and that indices of bone architecture, as determined by high-resolution CT or MRI, account for an additional 25–40% (34, 56–58). Other studies demonstrate that bone architecture correlates well with trabecular deformities, better than bone density (21, 23, 38, 43).

The potential significance of these results can be questioned because the tibia, like the iliac crest from which physical bone biopsy specimens are taken, is a surrogate site. In this regard, a study comparing several sites rich in trabecular bone is of relevance (59). Trabecular bone in the spine was assessed longitudinally by quantitative CT and that in the radius and tibia were assessed by peripheral quantitative CT in women at several menopausal states. The rate of bone loss varied depending on the menopausal state, but at each of those states was quite similar in the three sites.

We conclude that hypogonadal men, compared with eugonadal men, exhibit a deterioration of trabecular architecture of the tibia, as determined by μMRI. This deterioration may result in a decrease in bone strength to a greater degree than predicted by bone densitometry of the spine and hip.

Acknowledgments

We thank Helen Peachey, Louise Loh, Gail Jackson, and the nurses and staff of the General Clinical Research Center of the Hospital of the University of Pennsylvania for their assistance.

Received September 11, 2002. Accepted December 20, 2002.

Address all correspondence and requests for reprints to: Peter J. Snyder, M.D., 278 Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104-6149. E-mail: pjs@pobox.upenn.edu.

This work was supported by National Institutes of Health Grants M01-RR00041 (to the General Clinical Research Center, University of Pennsylvania), M01-RR00240 (to the General Clinical Research Center, Children’s Hospital of Philadelphia), R01 AR41443 and T32 CA74781 (to F.W.W.), and T32 AR07481 (to P.J.S.); and by a grant from the Endocrine Fellows Foundation (to M.B.).

References

20. Legrand E, Chappard D, Basle MF, Audran M 1999 Evaluation of trabecular...