This request has been forwarded from ILL by barb.

Please fill this request for FORDHAM HEALTH SCIENCES LIBRARY

Call Number: 81259020502

Journal Title: Am J Obstet Gynecol
Journal Vol: 102
Journal Issue: 5
Journal Year: 1968

Article Title: The estrogenic potential of estriol. A clinical and laboratory re-evaluation.
Article Author: Haskins
Article Pages: 665-70

Customer Information:

Name: Glaser, Rebecca
Status: Faculty
Address: SOUTHVIEW (via Kettering Hosp),
Site:
E-Mail Address: rglaser@woh.rr.com
Phone: 937-885-4555
Department: School of Medicine
The estrogenic potential of estriol

A clinical and laboratory re-evaluation

ARTHUR L. HASKINS, M.D.
ERICA F. MOSZKOWSKI, M.D.
VICTORIA P. WHITELOCK, M.D.
Baltimore, Maryland

The estrogenic effect of estriol was studied in humans through the observation of vaginal cytology, ferning of the cervical mucus, estrogen withdrawal bleedings, progestin withdrawal bleeding, and endometrial stimulation. The findings indicate that estriol possesses a low order of estrogenicity at 1 mg. a day. The relative efficacy of estriol is less than 10 per cent of stilbestrol. Specific polarity of estrogenic response in the human reproductive tract could not be demonstrated.

REVIVAL of interest in estriol has been occasioned by recent observations of variations in urinary estriol during compromised human pregnancies. In the past, research interest in estriol had been primarily concerned with specific tissue response to the hormone. These studies produced a number of inconsistencies and contradictions concerning estriol and its estrogenicity. The usual assumption that estriol is biologically inert could not be verified, since there were conditions in which estriol was more estrogenic than estradiol or estrone.

It is quite apparent that the method by which estrogenicity is evaluated is of the greatest importance. However, it is difficult to determine which procedures indicate true estrogenicity with greatest significance. Table I indicates some of the variation in the estrogenicity of estriol relative to the other major estrogens as reported by several investigators under stipulated testing conditions. There is excellent agreement, as expressed by Sealey and Sondern, Evans, Varney, and Koch, Huffman and Groolman, that estriol is less estrogenic than estradiol. Szego indicates to the contrary that estriol is highly estrogenic when compared to estrone and estradiol. The difference in the observations could not be totally related to the test conditions since, in some instances, the conditions were similar although the findings were at variance.

The effect of the solvent on the estrogenicity of the hormone has also been at issue. As summarized in Table II, Szego, as well as Burn and Elphick, observed an enhancement of the estrogenicity of estriol when the solvent was aqueous. Contrarily, Zondek and Sulman reported that an aqueous solvent for estriol reduced the estrogenicity to a 10 per cent level. It is of some interest to note that in addition to technique variation, the “aqueous solvent” varied in constitution.

Discrepancies in the results of estrogenicity studies concerned with the clinical effectiveness of estriol in humans were also noted. When estrogenicity was determined by vaginal cytology, Table III, Brown and Bradbury were unable to demonstrate a positive effect with 1 mg. of estriol daily for 10 days. Mack, however, with the same
Table I

<table>
<thead>
<tr>
<th>Investigator and method</th>
<th>Estrogenicity relative to estradiol (100%)</th>
<th>Estradiol</th>
<th>Estrone</th>
<th>Estriol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sealey and Sondern¹</td>
<td></td>
<td>100</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Szego⁴</td>
<td></td>
<td>100</td>
<td>18</td>
<td>256</td>
</tr>
<tr>
<td>Huffman and Grollman⁵</td>
<td></td>
<td>100</td>
<td>10</td>
<td>33</td>
</tr>
<tr>
<td>Evans, Varney, and Koch²</td>
<td></td>
<td>100</td>
<td>33</td>
<td>12</td>
</tr>
</tbody>
</table>

Table II. Estrogenicity of estriol in lipoid and "aqueous" solutions

<table>
<thead>
<tr>
<th>Investigator and method</th>
<th>Oil (%)</th>
<th>Water (%)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zondek and Sulman⁶</td>
<td>100</td>
<td>10</td>
<td>0.01N NaOH</td>
</tr>
<tr>
<td>Zondek and Sulman⁶</td>
<td>100</td>
<td>10</td>
<td>10% ethanol</td>
</tr>
<tr>
<td>Szego⁴</td>
<td>100</td>
<td>300</td>
<td>Saline</td>
</tr>
<tr>
<td>Burn and Elphick³</td>
<td>100</td>
<td>940</td>
<td>Water ethanol</td>
</tr>
</tbody>
</table>

dosage schedule demonstrated a positive cytologic effect similar in order to that achieved with estrone, estradiol, and stilbestrol. Puck⁵ observed a positive vaginal cytologic effect with 0.1 mg. estriol daily for 5 days.

In determining estrogenicity of estriol by withdrawal bleeding in women, Table IV,

Table III. Estrogenicity of oral estriol in humans as determined by vaginal cytology

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Dose</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown and Bradbury⁷</td>
<td>1.0 mg/day for 10 days</td>
<td>No effect</td>
</tr>
<tr>
<td>Mack⁸</td>
<td>1.0 mg/day for 10 days</td>
<td>Positive</td>
</tr>
<tr>
<td>Puck⁹</td>
<td>0.1 mg/day for 5 days</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Table IV. Estrogenicity of estriol in humans as determined by withdrawal bleeding

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Total dose (mg.)</th>
<th>Bleeding</th>
<th>No. of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soule¹⁰</td>
<td>50</td>
<td>yes</td>
<td>1</td>
</tr>
<tr>
<td>Puck⁹</td>
<td>30</td>
<td>no</td>
<td>5</td>
</tr>
</tbody>
</table>

Soule¹⁰ noted this phenomenon in one patient. He compared the effectiveness of estriol as being approximately that of estradiol and stilbestrol. Puck observed that estriol given at 5 mg. a day for 6 days would not induce withdrawal bleeding. In addition to this, there was no evidence of endometrial stimulation by microscopic examination, although there was stimulation of the cervical and vaginal mucosa at this and lower dose levels.

One of the more interesting chapters in the estriol story is the concept advanced by Puck, in which he postulates a type of polarity attributable to estriol. This, it is suggested, results in a manifestation of estrogenicity in the lower portions of the human reproductive tract (vagina and cervix) but with little or no effect upon the body of the uterus or endometrium.

It was this concept, as well as the conflicting reports concerning the estrogenicity of estriol, that stimulated us to review the problem in our laboratories. The estrogenic effect of estriol in the immature mouse as related to uterine weight with both aqueous and lipoid solvents was to be studied. In addition, the estrogenicity of the hormone in women was to be determined through the
evaluation of the maturation index of the vaginal mucosa, ferning of the cervical mucus, estrogen withdrawal bleeding, progesterone withdrawal bleeding, and microscopic study of the endometrium after estriol administration. The estrogenic effects of estriol in women are the subject of the current presentation.

Methods and material

Estriol, ethinyl estradiol, and stilbestrol were used throughout the study. Each was given orally. The major part of the study was concerned with estriol administration. The other two substances were administered to small control groups of patients to provide a positive estrogenic control in addition to the negative control in the estriol group.

Women to receive estriol were selected from inpatients and outpatients at Baltimore City Hospitals and University of Maryland Hospital. The patients were selected because of evidence of ovarian failure with amenorrhea and atrophic change in the vaginal mucosa. The patients ranged in age from 47 to 94 years with the average of 66 years. Each patient received 1 mg. of estriol daily by mouth for 28 days.

Vaginal smears for cytologic study were obtained through scraping the lateral vaginal wall with a wood spatula. This procedure was followed in order to provide a standard specimen relatively free from uterine contamination and from exfoliated vaginal pool cells. The material obtained was smeared on a glass slide and quickly fixed in 95 per cent alcohol. Subsequently the smears were prepared with Shorr's stain, the slides were then read by two investigators, and, whenever possible, 100 cells were read and differentiated into parabasal, intermediate, and superficial cells. The changes apparent at 2 weeks of administration were not significantly changed at the 4 weeks' medication level.

Comparison with stilbestrol and ethinyl estradiol is shown in Table VI. Stilbestrol at a dosage level of 0.1 mg. daily appears capable of inducing greater estrogen stimulation of the vaginal mucosa than estriol at the 1 mg. level. Ethinyl estradiol at the same dosage level as stilbestrol shows a greater estrogenic effect than stilbestrol or estriol.

Cervical mucus. In 10 patients treated with estriol at 1 mg. a day for 28 days, a positive fern test was noted in 2 patients. In similar groups of patients treated with ethinyl estradiol and stilbestrol at 0.1 mg. levels, all patients were found to have positive fern tests as indicated in Table VII.

Estrogen withdrawal bleeding. Three patients of the 60 treated with estriol showed evidence of estrogen withdrawal bleeding following therapy. This occurred within a week of the cessation of therapy and consisted of spotting for 2 to 3 days. As indicated in Table VIII, each of the patients manifesting estrogen withdrawal bleeding was noted to have stimulation of the vaginal mucosa at a level significantly greater than the mean of the study group.
Table V. Estriol effect on vaginal epithelium maturation index

<table>
<thead>
<tr>
<th>Patients</th>
<th>Average age 66 years</th>
<th>Range 47 - 94 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment: 1 mg. estriol by mouth for 28 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment 2 weeks</td>
<td>Posttreatment 4 weeks</td>
<td></td>
</tr>
<tr>
<td>51-41-8</td>
<td>23-37-20 18-63-19</td>
<td>31-63-6</td>
</tr>
</tbody>
</table>

Table VI. The maturation index of the vaginal epithelium after 14 days of therapy

<table>
<thead>
<tr>
<th>Dose (mg)</th>
<th>Duration (days)</th>
<th>Cytology</th>
<th>No. of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estriol</td>
<td>1.0</td>
<td>23-37-20</td>
<td>60</td>
</tr>
<tr>
<td>Ethinyl estradiol</td>
<td>0.1</td>
<td>1-53-46</td>
<td>10</td>
</tr>
<tr>
<td>Stilbestrol</td>
<td>0.1</td>
<td>1-73-26</td>
<td>10</td>
</tr>
</tbody>
</table>

Table IX. Megestrol withdrawal bleeding

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Pretreatment</th>
<th>Posttreatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. L.</td>
<td>61</td>
<td>100-0-0</td>
<td>32-56-12</td>
</tr>
<tr>
<td>K. K.</td>
<td>52</td>
<td>0-88-6-14</td>
<td>0-88-7-3</td>
</tr>
<tr>
<td>L. H.</td>
<td>47</td>
<td>88-9-3</td>
<td>1-74-25</td>
</tr>
</tbody>
</table>

Table VII. Ferning of cervical mucus after 14 days of therapy

<table>
<thead>
<tr>
<th>No. of patients</th>
<th>Daily dose (mg.)</th>
<th>Drug</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.0</td>
<td>Estriol</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>Ethinyl estradiol</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>Stilbestrol</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Table VIII. The maturation index of the 3 patients exhibiting estrogen withdrawal bleeding

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Pretreatment</th>
<th>During treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. S.</td>
<td>75</td>
<td>30-52-18</td>
<td>5-55-40</td>
</tr>
<tr>
<td>M. C.</td>
<td>58</td>
<td>6-68-26</td>
<td>2-48-50</td>
</tr>
<tr>
<td>L. H.</td>
<td>70</td>
<td>3-92-5</td>
<td>0-81-19</td>
</tr>
</tbody>
</table>

Conclusions

When given orally at a dose level of 1.0 mg. daily for 28 days, estriol produced an estrogenic effect in women. There is stimulation of the vaginal mucosa which becomes apparent by the second week of administration and remains constant through the following 2 weeks of administration. Return to pretreatment levels of maturation of the vaginal mucosa is noted on the smears taken 4 weeks after therapy. When compared to the vaginal cytologic effect of stilbestrol and ethinyl estradiol, it is noted that 1 mg. of estriol does not induce as great a degree of estrogenic stimulation of the vaginal mucosa as does 0.1 mg. stilbestrol. Ethinyl estradiol at this dosage level induces an intense estrogenic effect on the vaginal mucosa.
Other evidence of weak estrogenicity of estriol is seen in the occasional development of a positive fern test in the cervical mucus as compared to the 100 per cent development of positive fern tests with smaller amounts of ethinyl estradiol and stilbestrol.

Estrogen withdrawal bleeding with estriol occurred in 3 patients of the 60 study group. Withdrawal bleeding following the administration of a progestational agent occurred in one of three trials.

REFERENCES

Discussion
Dr. Willard M. Allen, St. Louis, Missouri. The studies reported by Dr. Haskins do show that estriol is a weak estrogen which has a specific effect on the cervix and the vaginal epithelium. A histologic effect on the endometrium was not detected. However, an effect must have been produced; estrogen withdrawal bleeding occurred in three trials of 60, and progestrone withdrawal bleeding in one of three trials. The three target tissues tested—vaginal epithelium, cervical glands, and endometrium—respond to estriol in the same way as they respond to other estrogens.

Estriol has been available for clinical use under the trade name of Theelol for at least 35 years. It has not been utilized very much, I suppose, because it is a "weak estrogen." The descriptive adjective "weak" has little real significance. Let me ask a pertinent question: "Which is a better estrogen for clinical use, ethinyl estradiol or Premarin?" The first is a highly potent estrogen, the second is a weak estrogen, yet both in proper dosage are highly effective and useful estrogens.

This careful study was done to see whether or not there was a qualitatively different effect on the three target tissues tested. It would be nice, for example, if estriol had a relatively greater effect on the vaginal epithelium and cervical glands than on the endometrium. If that were the case, oral estriol would be better for the oral treatment of atrophic vaginitis, or perhaps even the menopausal syndrome than estrogens now in use. No such difference was detected—all target tissues responded equally.

In 1944, I published a paper in the Southern Medical Journal giving the results of the bio-assay of several estrogens in 8 young ovariectomized women with an intact uterus. The amount of each estrogen over a 3 week period required to induce estrogen withdrawal bleeding was determined. Ethinyl estradiol given orally proved to be the most active of the estrogens tested. Also ethinyl estradiol was at least 30 times as active as estradiol. The question which now arises is, "How active is estriol?" In Haskins' group estrogen withdrawal bleeding occurred in 3 of 60 trials. I would predict that a dose of 3 to 5 mg. per day would produce withdrawal bleeding in 50 per cent or more of instances.

It seems to me, therefore, that Dr. Haskins' study proves that estriol is an effective estrogen that might be half as active as estradiol. Manifestly, estriol will not be used clinically to treat...
estrogen deficiency. However, it just may be that
the estriol circulating in the blood of the mother
during pregnancy may have a good deal of
significance.

Dr. Haskins’ paper should give impetus to
the study of blood levels of E1, E2, and E3 in
the blood during both normal and abnormal
pregnancy.

DR. R. L. VANDE WIELE, New York, New
York. I would like to make a few comments to
the interesting contribution of Dr. Haskins. In
analyzing the physiologic significance of his
studies, it is necessary to compare the dose of
estriol used by Dr. Haskins to the amount of
estriol produced in vivo. In the nonpregnant
female, 1 mg. of estriol, the dose found by Dr.
Haskins to have a significant biologic effect, is
an enormous amount of estriol. At the peak of
estrogen secretion, the ovary produces in the
neighborhood of 200μg of estradiol per day,
only a fraction of which is converted to estriol.
Furthermore, it is quite likely that only insign-
ificant amounts of free estriol, the form used
by Dr. Haskins, circulate, and that most of it
is conjugated before entering into the circulation.

In the pregnant female, however, the situation
is very different. Available data indicate that in
the third trimester somewhere between 20 and
80 mg. of estriol enters into the maternal circula-
tion. In addition, it has been shown by Dr.
Ryan, a member of our Society, that most, if
not all, of the estriol enters into the circulation
as the free compound. It is quite likely that
such high amounts of estriol have significant
biologic effects.

DR. HOWARD W. JONES, JR., Baltimore, Mary-
land. Dr. Allen pointed out that it would be
exceedingly helpful to have an estrogen which
acted on the vagina and cervix and not the
endometrium. Perhaps equally important would
be to have some estrogen which had a differential
effect on hot flushes and did not effect endo-
m trium.

Therefore, I rise simply to ask Dr. Haskins
if he could tell us about the effect of estriol on
hot flushes.

DR. EDWARD C. HUGHES, Syracuse, New York.
I presented a paper entitled, “Nutritional As-
pects of the Endometrium” at the Annual
Meeting of the American Association of Ob-
stetricians and Gynecologists some years ago.
I suggested that the dose level to stimulate the
function of the endometrium was 0.1 mg. of
diethylstilbestrol. I have maintained that idea
for a great many years. Lately, I have proved
this to myself by testing the amount of estrogen
which stimulates the endometrium through organ
culture of the endometrium. We find that the
size of the dose is most important for the stimula-
tive effects upon the metabolic activity of the
endometrium.

For instance, if you add more than 5μg to the
culture media, the uptake of glucose from the
fluid is decreased and the metabolism of glucose
by the endometrium to glycogen is decreased.

If you use less than a microgram (and we
have not decided how far we must go—we are
down to a hundredth of a microgram right now)
we do find that the uptake of glucose from the
culture media does increase. The endometrium
does metabolize glycogen in considerable quan-
tities, and the enzymes that are particularly in-
volved in the synthesis, phosphorylase and
synthetase, are likewise stimulated.

I think your suggestion, that a small dose of
estrogen has a stimulative effect upon the gen-
erative tract, is very important. If you wish to
depress the action, particularly in the endo-
m trium, a larger dose is appropriate.

DR. HASKINS (Closing). In regard to ques-
tion concerning 0.1 mg. stilbestrol: we have for
a number of years in the treatment of patients
with ovarian agenesis administered 0.1 mg.
stilbestrol daily without interruption and with
5 days a month of added synthetic progester
This will produce endometrial stimulation and
evoke regular menstrual bleeding.

The symptom of hot flushes was not studied.
Indeed, the majority of our patients did not
offer this complaint. This finding was un-
doubtedly relative to the advanced age of the
patient population.

The question of the glucuronide or of the
conjugation making the estriol inactive, I think,
is certainly an excellent point, but one which I
am unable to discuss competently.