Location: ALLEN
Call #: ILLiad TN: 83560
ISSN: 0029-7844 (Print)
Journal Title: Obstetrics and gynecology.
Volume: 83 Issue: 1
Month/Year: 1994
Pages: 43-6
Article Author: Holland EF; Leather AT; Studd JW
Article Title: The effect of 25-mg percutaneous estradiol implant
Imprint:
Received: 7/19/2006 03:07:19 PM

20403968

Borrower: OHUDAC
Lending String:
Patron: Glaser, Rebecca - TN; 93816
Need By: N/A
Regular
ARIEL Charge
Maxcost: $15.00
Shipping Address:
Fordham Health Sciences Library, ILL
Wright State University
3640 Colonel Glenn Hwy
Dayton Ohio 45435-0001
Fax: 937-775-2232
Ariel: 130.108.121.58
Odyssey: Email: fil@wsuol2.wright.edu
Phone: 937-775-4110
Notes:
GMR-RL
The Effect of 25-mg Percutaneous Estradiol Implants on the Bone Mass of Postmenopausal Women

E. F. N. HOLLAND, MB ChB, MRCOG, A. T. LEATHER, MB BS, MRCOG, AND
J. W. W. STUDD, MD, FRCOG

Objective: To determine whether the lowest available dose of percutaneous implant, 25 mg estradiol (E2), is effective for the prevention of postmenopausal bone loss.

Methods: Eighteen healthy postmenopausal women were treated with 25-mg percutaneous E2 implants for 1 year. Dual energy x-ray absorptiometry was performed at the lumbar spine and proximal hip using a quantitative digital radiography densitometer before treatment and after 1 year. Estradiol and FSH were also measured before and after 1 year of treatment. The changes in bone mineral density were compared with a matched reference group of 18 women who did not wish treatment.

Results: The median percentage changes in the treated group after 1 year were 5.65% at the lumbar spine, 3.38% at the femoral neck, and 3.36% total hip. At 1 year, there was a significant increase in bone mineral density from baseline at all sites measured except Ward triangle. The median post-treatment E2 level was 320 pmol/L (range 114–813), and FSH was 28 IU/L (range 2–66).

Conclusion: This study demonstrates that 25-mg percutaneous E2 implants significantly increase bone mineral density at the spine and hip in postmenopausal women. This dose is effective to prevent postmenopausal bone loss. (Obstet Gynecol 1994;83:43–6)

Estrogen replacement therapy prevents the loss of bone that occurs with the cessation of ovarian function,1,2 and epidemiologic data have confirmed that it reduces the incidence of osteoporotic fractures.3,4 It also alleviates menopausal symptoms and reduces deaths from myocardial infarctions5 and cerebrovascular accidents.6

It is advisable to administer the lowest dose necessary of any drug to provide an adequate response in a patient. The lowest available implant dose, 25 mg estradiol (E2), controls menopausal symptoms and results in a physiologic profile of circulating estrogens.7 We investigated the effect of this dose on the bone mineral density of postmenopausal women.

Materials and Methods

From previous experience, we expected changes of about 1 standard deviation or greater (about 4%) following treatment with this dose of percutaneous E2. This would require a trial involving 16 patients in each study limb to have a power of 80% of demonstrating a difference with a significance level of 5%.

We recruited 18 healthy postmenopausal women requesting estrogen replacement therapy. All had plasma FSH levels above 15 IU/L. The four who had previously undergone hysterectomy were considered to be menopausal from the time of onset of climacteric symptoms. None of the patients suffered from medical disorders or used any medication known to affect bone metabolism. Women with excessive tobacco use (more than ten cigarettes per day) or alcohol consumption (more than 14 units/week) were excluded.

All subjects received 25-mg percutaneous E2 implants (Organon Laboratories Ltd., Cambridge, UK) for 1 year. These were inserted under the skin of the anterior abdominal wall every 6 months.8 None received testosterone. The 14 women with uteri were given cyclic medroxyprogesterone acetate, 5 mg (Upjohn Ltd., Crawley, UK) for the first 10 days of each calendar month to protect the endometrium against hyperplasia.

The bone density at the hip and the lumbar spine was measured before treatment and at 1 year using a dual x-ray Hologic 1000 quantitative digital radiogra-
Table 1. Baseline Demographic Data

<table>
<thead>
<tr>
<th></th>
<th>Reference ($n = 18$)</th>
<th>Treatment ($n = 18$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>58.3 ± 7.5</td>
<td>55.3 ± 6.6</td>
</tr>
<tr>
<td>Menopausal age (y)</td>
<td>9.1 ± 8.9</td>
<td>8.4 ± 6.6</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>160.7 ± 7.1</td>
<td>164.9 ± 8.0</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>61.5 ± 8.1</td>
<td>61.7 ± 11.5</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>24.1 ± 3.0</td>
<td>25.3 ± 4.1</td>
</tr>
</tbody>
</table>

Data are presented as mean ± standard deviation.

The coefficient of variation, calculated by using a spinal phantom daily, was 0.67% during the course of the study. Precision in vivo was determined by serial scans in ten healthy premenopausal volunteers. The mean coefficients of variation were 0.98% at the lumbar spine, 1.03% at the femoral neck, 1.22% in the trochanteric region, 1.32% in the intertrochanteric region, 2.12% in total hip, and 1.83% at Ward triangle. Serum assays of FSH and E2 were performed before therapy and at 1 year.

Placebo-controlled randomization was considered unethical for this study. Therefore, we used as controls a reference group of 18 postmenopausal women matched for age, menopausal age, height, weight, body mass index, and initial bone mineral density who did not wish estrogen replacement therapy.

Two-tailed Student t test and Mann-Whitney U test were used where appropriate to compare the patient groups. The percentage bone density changes at 1 year were compared using Wilcoxon tests.

Results

Table 1 shows the baseline demographic data and Table 2 the initial bone mineral densities for the two groups. There was no significant difference between the groups for age, menopausal age, height, weight, body mass index, and bone mineral density.

Table 3 presents the median percentage bone density changes with 95% confidence intervals for all the sites measured. At 1 year, the treatment group showed a significant increase in bone mineral density from baseline at all sites except Ward triangle. The differences between the patient groups were significant ($P < .05$) after this time. The median post-treatment serum E2 level was 320 pmol/L (range 114–813), and FSH was 28 IU/L (range 2–66).

Three women in the treated group lost substantial amounts of bone (more than twice the measurement precision) from the lumbar spine, and two lost bone from the femoral neck. Fourteen and 11 women gained a significant amount of bone mass at the lumbar spine and femoral neck, respectively.

Discussion

Oral preparations are the most commonly prescribed for estrogen administration largely because they are cheap and convenient. Ingested E2 is metabolized by the liver to the less potent estrone, with a reversal of the physiologic ratio. It is claimed that the minimum dose of oral estrogen necessary to maintain bone mass is 0.625 mg conjugated equine estrogens and 1–2 mg of E2. These doses are used widely in clinical practice today. Unfortunately, patient compliance with oral therapy is poor. Less than 30% of women prescribed estrogen replacement pick up their prescription, and of those who do, only one-third continue with the medication for more than 3 months.

The percutaneous route of administration avoids the hepatic first-pass effect, resulting in physiologic premenopausal plasma levels of E2 and estrone. Transdermal patches are effective but are unsightly and expensive, and can cause allergic skin reactions. Conversely, percutaneous implants are not only cheap and convenient, but they also overcome the problem of poor patient compliance. Studd et al demonstrated a

![Image](https://example.com/image.png)

Table 2. Baseline Bone Mineral Density Data

<table>
<thead>
<tr>
<th></th>
<th>Reference ($n = 18$)</th>
<th>Treatment ($n = 18$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-4</td>
<td>0.933 ± 0.168</td>
<td>0.937 ± 0.185</td>
</tr>
<tr>
<td>Femoral neck</td>
<td>0.709 ± 0.136</td>
<td>0.707 ± 0.123</td>
</tr>
<tr>
<td>Trochanter</td>
<td>0.647 ± 0.107</td>
<td>0.601 ± 0.099</td>
</tr>
<tr>
<td>Intertrochanteric region</td>
<td>0.990 ± 0.199</td>
<td>0.967 ± 0.184</td>
</tr>
<tr>
<td>Total hip</td>
<td>0.840 ± 0.150</td>
<td>0.823 ± 0.149</td>
</tr>
<tr>
<td>Ward triangle</td>
<td>0.508 ± 0.141</td>
<td>0.547 ± 0.138</td>
</tr>
</tbody>
</table>

Data are presented as mean ± standard deviation.

Table 3. Median Percentage Changes in Bone Density

<table>
<thead>
<tr>
<th></th>
<th>Reference ($n = 18$)</th>
<th>Treatment ($n = 18$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-4</td>
<td>−1.14</td>
<td>5.65*</td>
</tr>
<tr>
<td>Femoral neck</td>
<td>−1.46</td>
<td>3.38*</td>
</tr>
<tr>
<td>Trochanter</td>
<td>−2.94*</td>
<td>4.52*</td>
</tr>
<tr>
<td>Intertrochanteric region</td>
<td>−1.14</td>
<td>2.62*</td>
</tr>
<tr>
<td>Total hip</td>
<td>−2.8*</td>
<td>3.36*</td>
</tr>
<tr>
<td>Ward triangle</td>
<td>−0.88</td>
<td>1.36</td>
</tr>
</tbody>
</table>

Data are presented as mean (95% confidence interval).

* $P < .05$ from baseline after 1 year.

† $P < .05$ between groups after 1 year.

Obstetrics & Gynecology
significant correlation between serum E2 levels and the percentage increase in vertebral bone density in postmenopausal women. Estradiol implants may be regarded as the most effective treatment for postmenopausal osteoporosis because of the high E2 level achieved.

The most commonly administered doses of implants are 50, 75, and 100 mg E2, used for premenstrual syndrome, climacteric depression, and osteoporosis. The addition of 100 mg testosterone implant can further enhance the patient's feeling of well-being and improve her sexuality. Although these doses of estrogen may be indicated to treat the patient with severe menopausal problems, depression, or established osteoporosis, they may be unnecessarily large for the early postmenopausal woman with mild climacteric symptoms. These doses are also more likely to be associated with supraphysiologic serum E2 levels in approximately 3% of patients. Although there are no published data demonstrating any ill effects with these high E2 levels, the clinical implications remain uncertain.

In a study of six patients using single-photon absorptionmetry, 25-mg implants maintained the postmenopausal skeleton. Our study is the first to demonstrate an increase in bone mineral density with this dose of E2 using the high-precision dual energy x-ray absorptiometry. The increases were comparable to reported data on 1.25 mg conjugated equine estrogens, 2 mg E2, and 50 μg Estraderm TTS (Ciba-Geigy, Summit, NJ) preparations.

Bone mineral density will decrease in some women despite the use of accepted bone-sparing doses of estrogen. In our study, three treated women (16.6%) lost a significant amount of bone density at the spine, and two (12.5%) lost bone from the femoral neck. This emphasizes the necessity for serial bone densitometry to ensure that there is an appropriate response to low-dose therapy. If this measurement is unavailable or a poor skeletal response is evident, then administration of a higher dose of E2 should be considered.

This study confirms that 25-mg E2 implants are an effective preparation for the prevention and treatment of postmenopausal bone loss.

References

2. Christiansen C, Christensen MS, Larsen N-E, Transbol IB. Pathophysiological mechanisms of estrogen effect on bone metabolism.

Holland et al. 25 mg E2 and Bone Mass 45
Obstetric Care: State of the Art

March 3–5, 1994

The American College of Obstetricians and Gynecologists is sponsoring a course on obstetric management issues, to be held at the Four Seasons Hotel in Montreal, Quebec, Canada. This course has been approved for 16 cognates, Formal Learning, by The American College of Obstetricians and Gynecologists. For further information, contact the Registrar, The American College of Obstetricians and Gynecologists, 409 12th Street SW, Washington, DC 20024–2188; (202) 863–2541.