Endogenous sex hormones and metabolic syndrome in aging men.

Majon Muller, MD, PhD*; Diederick E. Grobbee, MD, PhD*; Isolde den Tonkelaar, PhD†; Steven W.J. Lamberts, MD, PhD‡; Yvonne T. van der Schouw, PhD*.

*Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
† International Health Foundation, Utrecht, The Netherlands
‡ Department of Internal Medicine, Erasmus University Medical Center Rotterdam, The Netherlands

Grant support: Supported financially by the International Health Foundation, Geneva, Switzerland.

Word-count: 3400

Address for Correspondence:
Yvonne T. van der Schouw, PhD
Julius Center for Health Sciences and Primary Care
University Medical Center Utrecht
PO Box 85500, Room D 01.335
3508 GA Utrecht
The Netherlands
Phone: +31 30 2509630
Fax: +31 30 250 5485
Email: y.t.vanderschouw@jc.azu.nl
Internet: www.juliuscenter.nl
Abstract

Background: Sex hormone levels in men change during aging. These changes may be associated with insulin sensitivity and the metabolic syndrome.

Methods: We studied the association between endogenous sex hormones and characteristics of the metabolic syndrome in 400 independently living men between 40 and 80 years of age in a cross-sectional study. Serum concentrations of lipids, glucose, insulin, total testosterone (TT), sex hormone-binding globulin (SHBG), estradiol (E2), and dehydroepiandrosterone-sulfate (DHEA-S) were measured. Bioavailable testosterone (BT) was calculated using TT and SHBG. Body height, weight, waist-hip circumference, blood pressure, and physical activity were assessed. Smoking and alcohol consumption was estimated from self-report. The metabolic syndrome was defined according to the National Cholesterol Education Program (NCEP) definition and insulin sensitivity was calculated by use of the quantitative insulin sensitivity check index (QUICKI).

Results: Multiple logistic regression analyses showed an inverse relationship according to 1 SD increase for circulating TT (OR=0.43, 95% CI 0.32-0.59), BT (OR=0.62, 95% CI 0.46-0.83), SHBG (OR=0.46, 95% CI 0.33-0.64), and DHEA-S (OR=0.76, 95% CI 0.56-1.02) with the metabolic syndrome. Each SD increase in E2 levels was not significantly associated with the metabolic syndrome (OR=1.16; 95% CI, 0.92-1.45). Linear regression analyses showed that higher TT, BT and SHBG levels were related to higher insulin sensitivity; β (95%CI) were 0.011 (0.008-0.015), 0.005 (0.001-0.009), and 0.013 (0.010-0.017), respectively, whereas no effects were found for DHEA-S and E2. Estimates were adjusted for age, smoking, alcohol consumption and physical activity score. Further adjustment for insulin-levels and body composition measurements attenuated the estimates and the associations were similar in the group free of cardiovascular disease (CVD) and diabetes.
Conclusions: Higher testosterone and SHBG levels in aging males are independently associated with a higher insulin sensitivity and a reduced risk of the metabolic syndrome, independent of insulin-levels and body composition measurements, suggesting that these hormones may protect against the development of metabolic syndrome.

Keywords: cardiovascular, insulin, metabolic syndrome, risk factors, sex hormones
Introduction

The metabolic syndrome represents a constellation of lipid and non-lipid risk factors of metabolic origin and is closely linked to a generalized metabolic disorder called insulin resistance in which the normal actions of insulin are impaired (1;2). The syndrome is most important because of its association with subsequent development of type 2 diabetes mellitus and cardiovascular disease (CVD) (2;3). The pathogenesis of the syndrome is multifactorial, but obesity and sedentary lifestyle and factors in concert with diet and still largely unknown genetic factors interact in the occurrence of the syndrome (3).

Decline of both testicular and adrenal function with aging causes a decrease in androgen concentrations in men (4). Epidemiological evidence have shown that sex steroid hormones are related to type 2 diabetes and CVD in men in some but not all studies (5-9). Although the mechanisms underlying the association between endogenous sex hormone levels and both diabetes and CVD are not entirely understood, it has been postulated that low levels of TT, BT, SHBG, and DHEA-S are associated with unfavorable levels of several strong CVD risk factors, such as lipids (10-13), and blood pressure (8;11;14), which are components of the metabolic syndrome, and insulin levels (15-17). To our knowledge no data exist linking endogenous sex hormone levels to the metabolic syndrome.

The aim of this large-scale cross-sectional study was to investigate the relation of endogenous testosterone, sex hormone-binding globulin, dehydroepiandrosterone-sulfate, and E2 with metabolic syndrome, as defined by the National Cholesterol Education Program (NCEP), in middle-aged and elderly men.
Subjects and Methods

Subjects

The study is a cross-sectional, single-center study in 400 independently living men aged 40 to 80 years. The subjects were recruited by means of asking female participants of other studies conducted by the Julius center by letter whether they knew a possible interested male volunteer between the age of 40 and 80. Invitation letters were send to 770 female participants. Due to this indirect way of recruiting it was not possible to assess the exact participation rate for this group. However, 240 men volunteered for participation.

Next, names and addresses of a randomly selected male population aged 40-80 years were drawn from the municipal register of Utrecht, a large sized town in the middle part of The Netherlands. 1230 invitation letters were sent to male inhabitants of Utrecht by means of a selection from the municipal register. From this group 390 men volunteered for participation (participation rate of 31.7%). From the 630 volunteers we excluded those who did not live independently and subjects who were not physically or mentally able to visit the study center independently (n=16). No additional health-related eligibility criteria were used. Of the remaining 614 men eventually 400 men were randomly selected to participate. To yield equal numbers in each age-decade from the age of 40 to 80, we sampled 100 men in each decade of age. All participants gave written informed consent before enrolment in the study and the institutional review board of the University Medical Center Utrecht approved the study.

Procedure

Data collection took place between March 2001 and April 2002. During two visits to the study center medical histories were obtained, including a self-reported physician diagnosis, a
venapuncture was performed between 0800h and 1000h, and fasting blood samples were obtained. Platelet free serum was obtained by centrifugation and immediately stored at -20°C.

Hormone determinations

Levels of steroid were measured in serum. TT was measured after diethylether extraction using an in house competitive radioimmunoassay employing a polyclonal antitestosterone-antibody (Dr.Pratt AZG 3290). $[^{1}\alpha, 2^{\alpha}\text{-}3\text{H}]-\text{Testosteron}$ (DuPont Nederland B.V.) was used as a tracer following chromatographic verification of its purity. The lower limit of detection was 0.24 nmol/L and inter-assay variation was 6.0; 5.4 and 8.6% at 2.1; 5.6 and 23 nmol/L respectively (n=85). SHBG was measured using an immunometric technique on an IMMULITE Analyzer (Diagnostic Products Corporation Los Angeles USA). The lower limit of detection was 5 nmol/L and inter-assay variation was 6.1; 4.9 and 6.9% at 11.6; 36 and 93 nmol/L respectively (n=30). BT was calculated from SHBG and TT using the method of Vermeulen et al.(18) Total E₂ was measured after diethylether extraction and Sephadex chromatography using an in house competitive radioimmunoassay employing a polyclonal anti-estradiol-antibody (Dr F de Jong, Erasmus MC Rotterdam NL). $[^{2,4,6,7}\text{-}3\text{H}]-\text{Estradiol}$ (Amersham, The Netherlands B.V.) was used as a tracer following chromatographic verification of its purity. The lower limit of detection was 20 pmol/L (2 mL sample) and inter-assay variation was 10.0 and 3.1% at 81 and 660 pmol/L respectively (n=24, resp.17). DHEA-S was measured using an immunometric technique on an Advantage Chemiluminescense System (Nichols Institute Diagnostics, San Juan Capistrano, USA). The lower limit of detection was 0.1 µmol/L and inter-assay variation was 5.2; 5.6 and 4.2% at 1.0; 4.9 and 14.2 µmol/L respectively (n=19).
Risk factors

During the examination height and weight were measured in standing position without shoes. Body mass index (BMI) was calculated as the weight in kilograms divided by the square of height in meters. Waist circumference was measured at the level midway between the lower rib margin and the iliac crest with participants in standing position, breathing out gently. Peripheral blood pressure (BP) was measured twice in the right brachial artery with a semi-automated device (Dynamap). The average of the two measurements of systolic and diastolic blood pressure was used for analysis and further calculation. An automatic enzymatic procedure was used to determine serum total cholesterol (Synchon LX Systems; Beckman Coulter). High-density lipoprotein (HDL) cholesterol and triglycerides were measured similarly. Fasting glucose levels were assessed using a GlucoTouch reflectometer (LifeScan, Inc., Benelux), a reagent-strip glucose oxidase method. Venous whole blood was immediately applied to the test strip. Fasting insulin levels (mIU/L) were measured using an IMMULITE 2000 Analyzer (DPC, USA). The lower limit of detection was 2 mIU/L and inter-assay variation was 8.6; 4.8; 4.4; 5.1 and 5.4% at 14; 27; 86; 175 and 354 mIU/L.

Metabolic Syndrome

The metabolic syndrome according to the NCEP (1) was defined as present when 3 or more of the following criteria were met: fasting plasma glucose of at least 6.1 mmol/L (110 mg/dL), serum triglycerides of at least 1.7 mmol/L (150 mg/dL), serum HDL cholesterol less than 1.0 mmol/l (40 mg/dL), blood pressure of least 130/85 mmHg or antihypertensive medication use, or waist girth of more than 102 cm. This applied to 24% of the participants.
Insulin sensitivity

To assess insulin sensitivity we calculated the quantitative insulin sensitivity check index (QUICKI), which has a high correlation with insulin sensitivity measured with the glucose clamp technique (19). QUICKI can be determined from fasting insulin and glucose values according to the equation: \(\text{QUICKI} = \frac{1}{\log(I_0) + \log(G_0)} \), in which \(I_0 \) is fasting insulin (mIU/L) and \(G_0 \) is fasting glucose (mg/dL=mmol/L*18.182).

Other variables

Participants were asked about current use of medications and these reports were checked by examining labels of drugs brought to the clinic. Diabetes mellitus was defined as treatment with insulin or oral hypoglycemic agents. Prevalent CVD was defined as a pooled condition including coronary heart disease, peripheral artery disease and stroke, which was defined as present when men reported a history of these conditions with diagnosis and treatment. Smoking was estimated from self-report and was categorized in current, former, never. The subject’s customary alcohol intake was estimated from a validated food frequency questionnaire (20) and was categorized as 0, 0-20, 20-40, or >40 grams/day alcohol consumption. Physical activity was assessed using a questionnaire that was validated in an elderly population (21).

Data analysis

Logistic regression was used to estimate the odds ratios (OR) and 95% confidence interval (CI) for the presence of the separate risk factors of metabolic syndrome included in the NCEP definition. The independent variables of interest were TT, BT, SHBG, DHEA-S, and E2. We
adjusted logistic regression models for age, smoking (current, else), alcohol consumption (grams/day), physical activity, and for all other risk factors included in the NCEP definition of metabolic syndrome.

Multivariate models using ANCOVA-analyses were used to estimate mean sex hormone levels with 95% CI across categories of risk factors (0, 1, 2, ≥ 3) according to the NCEP definition of metabolic syndrome. Trend analyses were done using linear regression models. Estimates were adjusted for age, smoking, alcohol consumption, and physical activity. To rule out the influence of systemic illness on sex hormone levels we repeated ANCOVA-analyses in a subgroup of subjects without prevalent diabetes mellitus (n=21) and CVD (n=68).

Logistic regression was used to quantify the effect of sex hormone levels on the presence of the metabolic syndrome by use of odds ratios (OR) and its 95% confidence interval (CI). The independent variables of interest were TT, BT, SHBG, DHEA-S, and E2. We adjusted regression models for age, smoking, alcohol consumption, and physical activity (model 1). To evaluate the association of sex hormones and metabolic syndrome independently of insulin levels and body composition measurements, we additionally adjusted logistic regression models for insulin (model 2) and waist circumference and BMI (model 3).

Linear regression analysis was used to estimate the relation of circulating sex hormone levels with insulin levels and insulin sensitivity (assessed with QUICKI). We adjusted regression models for age, smoking, alcohol consumption, and physical activity. To elucidate whether and to what extent the observed associations of sex hormone levels with insulin sensitivity might be explained by intermediates, further analysis also adjusted for body composition measurements (waist girth and BMI). Statistical analyses were performed using SPSS for windows (version 11.5).
Results

The characteristics of the study population are presented in Table 1. The median age of the total study group was 60 years (range 40-80 years). 20% of the participants were current smokers, 58% former smokers and 22% had never smoked. Mean sex hormone levels were in line with results from other studies (6;10;13). The diagnosis of the metabolic syndrome is made when 3 or more of the risk determinants shown in Table 2 are present. In this population 19% had no risk factors, 31% had one risk factor, 26% had two risk factors and 24% had 3 or more risk factors.

Risk factors

An inverse relationship was observed for TT, BT, and SHBG, with risk factors of the metabolic syndrome (Table 3). Each SD (5.3 nmol/L) increase in TT was associated with a 38% reduced risk of having a high waist girth (OR=0.62, 95% CI 0.47-0.83), a 37% reduced risk of having a low HDL levels (OR=0.63, 95% CI 0.42-0.92), a 37% reduced risk of having a high fasting glucose levels (OR=0.63, 95% CI 0.47-0.84), and a 17% reduced risk of having high blood pressure (OR=0.83, 95% CI 0.65-1.07). Each SD (14.5 nmol/L) increase in SHBG was associated with a 20-30% reduced risk of having either high waist girth, high triglyceride levels, low HDL levels, high fasting glucose levels or high blood pressure (Table 3). An increase in DHEA-S levels was only statistically significantly associated with a reduced risk of having a high waist girth (OR=0.68, 95% CI 0.51-0.92). Each SD (22.8 pmol/L) increase in E2 levels was associated with a 45% increased risk of having a high waist girth (OR=1.45, 95% CI 1.15-1.83), a 26% increased risk of having high triglyceride levels (OR=1.26, 95% CI 0.98-1.61), and a 36% reduced risk of low HDL levels (OR=0.64, 95% CI 0.45-1.91) (Table 3).
Figure 1 shows the adjusted mean (95% CI) for TT, SHBG, DHEA-S, and E2. Adjusted mean (95% CI) BT levels for 0, 1, 2, ≥3 risk factors were 8.5 nmol/L (8.1-9.0), 8.3 nmol/L (7.9-8.6), 8.2 nmol/L (7.8-8.6), and 7.6 nmol/l (7.2-8.0), respectively (P for trend < 0.001). The number of risk factors increased with lower circulating T, SHBG, and DHEA-S levels (P-value for linear trend was <0.001, 0.01, 0.001, and 0.04, respectively), and with higher E2 levels (P-value for linear trend was 0.04). Exclusion of subjects with prevalent diabetes and CVD did not change the observed estimates (data not shown).

Insulin sensitivity

Linear regression analyses showed that higher TT, BT, DHEA-S, and SHBG levels were associated with lower fasting insulin levels. Higher TT, BT, and SHBG levels with higher insulin sensitivity (Table 4), whereas no effects were found for DHEA-S and E2. After further adjustment for waist girth and BMI, higher levels of E2 were associated with higher insulin sensitivity (β=0.003, 95%CI 0.00; 0.006). The relations of TT, BT and SHBG with insulin levels were attenuated; linear regression coefficients (95% CI) were -0.72 (-1.28; -0.15), -0.24 (-0.85; 0.36), -0.98 (-1.54; -0.40), respectively. Similar effects were seen for the association between TT, BT and SHBG with insulin sensitivity; linear regression coefficients (95% CI) were 0.006 (0.002; 0.009), 0.000 (-0.003, 0.004), 0.009 (0.005; 0.012), respectively.

Metabolic syndrome

Multiple logistic regression analyses showed an inverse relationship for TT, BT, SHBG, and DHEA-S with metabolic syndrome (Table 5). Each SD (5.3 nmol/L) increase in TT was associated with a 57% reduced risk of having the metabolic syndrome (OR=0.43, 95% CI 0.32-0.59). Each SD (14.5 nmol/L) increase in SHBG was associated with a 54% reduced risk of
having the metabolic syndrome (OR=0.46, 95% CI 0.33-0.64) (Table 4). When both TT and SHBG were entered in the multivariate model the independent reduced risk of having the metabolic syndrome was 46% for TT according to 1 SD increase (OR=0.54, 95% CI 0.37-0.79), and 31% for SHBG according to 1 SD increase (OR=0.69, 95% CI 0.46-1.03).

E2 levels were not significantly associated with the risk of having the metabolic syndrome (OR=1.16; 95% CI, 0.92-1.45). Adjustment for insulin levels (model 2) and body composition measurements (BMI, waist circumference; model 3) did attenuate the estimates, suggesting that the relation for TT, BT, SHBG, DHEA-S, and E2 with metabolic syndrome was partly explained by insulin levels (Table 5). When adjustments were made for both insulin levels and body composition only an increase in TT and SHBG were associated with a reduced risk of having the metabolic syndrome; the OR were respectively 0.64 (95% CI 0.45-0.91) and 0.65 (95% CI 0.45-0.93), suggesting that only TT and SHBG are independently associated with the metabolic syndrome.

Discussion

This population-based cross-sectional study of middle-aged and elderly men showed that serum levels of low endogenous TT, BT, SHBG, and DHEA-S were related to the metabolic syndrome, lower insulin sensitivity, and higher fasting serum insulin levels. TT and SHBG levels were associated with all separate components of the metabolic syndrome, whereas E2 levels were only associated with body fat distribution and triglyceride levels. Furthermore, we observed that DHEA-S levels were only significantly associated with waist circumference. However, the number of risk factors increased significantly with lower circulating DHEA-S levels. Adjustment for fasting insulin levels and body composition measurements attenuated the associations between sex hormones and metabolic syndrome, suggesting that apart from a
direct effect of endogenous sex hormone levels on the metabolic syndrome and its risk factors, lower sex hormone levels might be particularly associated with insulin levels, insulin sensitivity and obesity, which in turn are strongly related to the metabolic syndrome. The associations could not be explained by age, smoking, alcohol consumption, and physical activity.

To appreciate these findings, some issues need to be addressed. Strengths of the present study include that, to our knowledge, this study is the first study to date to assess the association between circulating sex hormone levels and the presence of the metabolic syndrome in independently living men across a wide age range. In this study, blood samples were obtained between 08.00 a.m. and 10.00 a.m. which is necessary to obtain reliable measurements due to the possible daily variation of sex hormones (22).

The interpretability of the results may be restricted by several factors inherent to the cross-sectional design, which limits conclusions regarding within-person change or direction of causality. A further concern is that because of within-subject biological variation, the single measurement of both sex hormones and several risk factors will reflect long-term averages less precisely than repeated measurements. However, this misclassification is likely to be random and this will in most cases lead to an underestimation of the associations.

The association between low endogenous sex hormone levels and increased risk of metabolic syndrome is in line with several observational studies on endogenous sex hormones and cardiovascular risk factors (8;10;11;13;14;16;17;23). Cross-sectional studies have found high T and SHBG levels to be associated with high HDL-cholesterol levels.(10;11) A longitudinal analysis of MRFIT confirmed this relationship (13). Furthermore, this study showed that a decrease in endogenous T is associated with an increase in triglycerides. Concerning the association between sex hormones and blood pressure research findings
suggest a relationship between essential hypertension and impaired T levels in men (8;14;23). We observed that E2 levels were not significantly associated with metabolic syndrome and its risk factors. However, other studies have suggested that the levels of E2 within the physiological range of healthy men may help maintain a desirable profile of lipid and glucose metabolism (24).

Numerous studies support the biological plausibility of the relationship between sex hormones and metabolic syndrome (13;25;26). It is hypothesized that testosterone is directly related to HDL-cholesterol by increasing the hepatic production of apolipoprotein A-I, the major protein constituent of nascent high-density lipoprotein particles (13). The effect of endogenous testosterone on triglyceride levels may in turn be secondary to testosterone effects on body fat distribution, insulin and glucose metabolism. Several lines of evidence support an association between hypogonadism and insulin sensitivity in men. Low circulating levels of testosterone are observed in obesity, which is accompanied by insulin resistance (27). Furthermore, administration of T to hypogonadal rats (26) or humans (28) has resulted in reductions of both abdominal obesity and insulin resistance, as measured by the glucose clamp technique, and glucose and lipid profiles improved (29;30;31). In contrast, T supplementation can lead to depressed SHBG levels, which in time can lead to an unfavorable cardiovascular risk profile and metabolic syndrome (10). This indicates that caution has to be taken with (supraphysiological) T supplementation (32). On the other hand it has been suggested that insulin is capable of stimulating T production and, simultaneously, of inhibiting SHBG concentrations in men. It is not known whether the observed relationship between low plasma T is direct or indirect, because the relationship between T and insulin is not fully understood (15). Furthermore, low circulating T levels might, through compensatory hyperinsulinemia, generate hypertension (25).
An important question is whether the relationship between metabolic syndrome and hormones is only a reflection of confounding with body weight. A likely finding is that central obesity and insulin resistance and the effects on sex hormone binding globulin are driving the association of hormone levels and metabolic syndrome. However, after adjusting for insulin levels and body composition measurements increases in endogenous TT and SHBG levels are still independently associated with reduced risk of metabolic syndrome.

Systemic disease has been shown to influence male gonadal function (33) and it could be hypothesized that due to presence of cardiovascular disease or diabetes sex hormone levels decrease. An important question, therefore, is whether lower levels of sex hormones that were related to a higher prevalence of metabolic syndrome are cause or effect. In an attempt to answer this question, we subdivided the cohort by presence or absence of prevalent diabetes and cardiovascular disease. Adjusted mean sex hormone levels for categories of risk factors did not change (data not shown), suggesting that the findings were not due to prevalent diabetes and CVD, and would be compatible but with the view that low sex hormone levels are indeed causally related to disease. Follow-up studies and preferably intervention studies should be performed to clarify the complex relationships among TT, BT, SHBG, DHEA-S, E2, insulin, and cardiovascular risk factors in men.

In summary, low endogenous TT and SHBG levels appear to increase the risk of metabolic syndrome in middle-aged and elderly men independently of fasting insulin levels and body composition measurements and that low levels of these sex hormones are related to lower insulin sensitivity and higher fasting insulin levels, suggesting that these hormones might play a protective role in the development of metabolic syndrome and insulin resistance and subsequent diabetes mellitus and cardiovascular disease in aging men. However, a causal
interpretation of our findings is inherently restricted by the cross-sectional nature of the design.

Acknowledgement

The authors thank the individuals participating in this study. We acknowledge the skillful contribution of Hanneke den Breeijen, Janneke van der Brink, Marjon van der Meer to the data collection and data-management. They also thank Inge Maitimu for carrying out the hormone measurements. Furthermore, we acknowledge the contribution of the members of the project group.
References

Cardiovascular risk factors in men: The role of gonadal steroids and sex hormone-binding globulin. Metabolism 50:882-888

Relationships between endogenous steroid hormone, sex hormone-binding globulin and lipoprotein levels in men: contribution of visceral obesity, insulin levels and other metabolic variables. ath 133:235-244

14. **Khaw KT, Barrett-Connor E 1988**

Sex steroid hormones, upper body obesity, and insulin resistance. J Clin Endocrinol Metab 87:4522-4527

Decreased testosterone and dehydroepiandrosterone sulfate concentrations are associated with increased insulin and glucose concentrations in nondiabetic men. Metabolism 43:599-603

Insulin resistance, body fat distribution, and sex hormones in men. Diabetes 43:212-219

A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84:3666-3672

Table 1. Characteristics of the study sample (N=400).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>60.2 ± 11.3</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.3 ± 3.5</td>
</tr>
<tr>
<td>Waist (cm)</td>
<td>98.9 ± 9.4</td>
</tr>
<tr>
<td>Smoking, current (%)</td>
<td>20</td>
</tr>
<tr>
<td>Alcohol consumption (grams/day)</td>
<td>20.2 ± 21.5</td>
</tr>
<tr>
<td>Physical activity (Voorrips score)</td>
<td>18.7 ± 7.5</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>143.4 ± 22.1</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>81.6 ± 11.0</td>
</tr>
<tr>
<td>Cholesterol, total (mmol/L)</td>
<td>5.8 ± 1.1</td>
</tr>
<tr>
<td>Cholesterol, HDL (mmol/L)</td>
<td>1.3 ± 0.3</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>1.5 ± 1.0</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>6.0 ± 1.5</td>
</tr>
<tr>
<td>Insulin (mIU/L)</td>
<td>8.4 ± 5.9</td>
</tr>
<tr>
<td>Insulin sensitivity (QUICKI)</td>
<td>0.35 ± 0.04</td>
</tr>
<tr>
<td>Diabetes (%)</td>
<td>5.3</td>
</tr>
<tr>
<td>Cardiovascular disease (%)</td>
<td>17</td>
</tr>
</tbody>
</table>

Sex hormones

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Testosterone (nmol/L)</td>
<td>18.5 ± 5.3</td>
</tr>
<tr>
<td>Bioavailable Testosterone (nmol/L)</td>
<td>8.1 ± 2.2</td>
</tr>
<tr>
<td>Sex hormone-binding globulin (nmol/L)</td>
<td>40.6 ± 14.5</td>
</tr>
<tr>
<td>Dehydroepiandrosterone-sulfate (µmol/L)</td>
<td>6.7 ± 3.3</td>
</tr>
<tr>
<td>Estradiol (pmol/L)</td>
<td>91.3 ± 22.8</td>
</tr>
</tbody>
</table>

Data represent mean ± SD or percentages.

For some men, data were missing on total, HDL cholesterol, glucose (n=1), triglycerides (n=4), alcohol consumption and physical activity (n=4)
Table 2. Identification of the metabolic syndrome in this study (N=400)

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Defining Level*</th>
<th>Prevalence in this study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal obesity (waist circumference)</td>
<td>> 102 cm</td>
<td>30%</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>≥ 1.7 mmol/L</td>
<td>26%</td>
</tr>
<tr>
<td>High-density lipoprotein cholesterol</td>
<td>< 1.0 mmol/L</td>
<td>14%</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>≥ 6.1 mmol/L</td>
<td>28%</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>≥ 130/85 mmHg or medication</td>
<td>67%</td>
</tr>
<tr>
<td>≥ 3 risk factors</td>
<td></td>
<td>24%</td>
</tr>
</tbody>
</table>

National Cholesterol Education Program (NCEP) definition.
Table 3. Adjusted* odds ratios (95% confidence intervals) for the risk of the separate risk factors to a 1 SD increase in sex hormones.

<table>
<thead>
<tr>
<th>Waist</th>
<th>Triglyceride</th>
<th>HDL</th>
<th>Glucose</th>
<th>Blood pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>>102 cm</td>
<td>≥ 1.7 mmol/L</td>
<td>< 1.0 mmol/L</td>
<td>≥ 6.1 mmol/L</td>
<td>≥ 130/85 mmHg or medication</td>
</tr>
<tr>
<td>TT (nmol/L)</td>
<td>5.3</td>
<td>0.62 (0.47 – 0.83)</td>
<td>0.86 (0.64 – 1.16)</td>
<td>0.63 (0.43 – 0.92)</td>
</tr>
<tr>
<td>BT (nmol/L)</td>
<td>2.2</td>
<td>0.73 (0.55 – 0.97)</td>
<td>1.05 (0.79 – 1.41)</td>
<td>0.71 (0.48 – 1.05)</td>
</tr>
<tr>
<td>SHBG (nmol/L)</td>
<td>14.5</td>
<td>0.71 (0.54 – 0.95)</td>
<td>0.72 (0.53 – 0.98)</td>
<td>0.71 (0.48 – 1.04)</td>
</tr>
<tr>
<td>DHEA-S (µmol/L)</td>
<td>3.3</td>
<td>0.68 (0.51 – 0.92)</td>
<td>0.85 (0.62 – 1.15)</td>
<td>0.89 (0.57 – 1.38)</td>
</tr>
<tr>
<td>E2 (pmol/L)</td>
<td>22.8</td>
<td>1.45 (1.15 – 1.83)</td>
<td>1.26 (0.98 – 1.61)</td>
<td>0.64 (0.45 – 0.91)</td>
</tr>
</tbody>
</table>

* Odds ratios were adjusted for age, smoking, alcohol consumption, physical activity, and for the other risk factors of the metabolic syndrome.
Risk factors metabolic syndrome

- Total Testosterone (nmol/L)
 - P-trend < 0.001

- SHBG (nmol/L)
 - P-trend < 0.001

- DHEAS (umol/L)
 - P-trend = 0.04

- Estradiol (pmol/L)
 - P-trend = 0.04
Figure 1. Adjusted mean (95% CI) endogenous sex hormone levels for categories of number of risk factors according to the NCEP-definition for metabolic syndrome and the p-value for trend. Mean sex hormone levels were adjusted for age, smoking (pack years), alcohol consumption (grams/day), and physical activity-score.
Table 4. Adjusted* linear regression coefficients (95% confidence intervals) for the relation of sex hormones (1SD increase) with insulin levels and insulin sensitivity (QUICKI†).

<table>
<thead>
<tr>
<th></th>
<th>Insulin levels</th>
<th></th>
<th></th>
<th>Insulin sensitivity†</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SD</td>
<td>ß</td>
<td>95% CI</td>
<td>ß</td>
<td>95% CI</td>
</tr>
<tr>
<td>TT (nmol/L)</td>
<td>5.3</td>
<td>-1.53</td>
<td>-2.13; -0.94</td>
<td>0.011</td>
<td>0.008; 0.015</td>
</tr>
<tr>
<td>BT (nmol/L)</td>
<td>2.2</td>
<td>-0.84</td>
<td>-1.51; -0.18</td>
<td>0.005</td>
<td>0.001; 0.009</td>
</tr>
<tr>
<td>SHBG (nmol/L)</td>
<td>14.5</td>
<td>-1.63</td>
<td>-2.25; -1.02</td>
<td>0.013</td>
<td>0.010; 0.017</td>
</tr>
<tr>
<td>DHEA-S (µmol/L)</td>
<td>3.3</td>
<td>-0.71</td>
<td>-1.40; -0.03</td>
<td>0.002</td>
<td>-0.002; 0.006</td>
</tr>
<tr>
<td>E2 (pmol/L)</td>
<td>22.8</td>
<td>0.26</td>
<td>-0.31; 0.83</td>
<td>0.000</td>
<td>-0.004; 0.003</td>
</tr>
</tbody>
</table>

* Adjusted for age, smoking, alcohol consumption, physical activity
† QUICKI = quantitative insulin sensitivity check index
Table 5. Adjusted odds ratios (95% confidence intervals) for the risk of metabolic syndrome to a 1 SD increase in sex hormones.

<table>
<thead>
<tr>
<th>Risk of Metabolic syndrome*</th>
<th>SD</th>
<th>Crude</th>
<th>Model 1†</th>
<th>Model 2‡</th>
<th>Model 3**</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT (nmol/L)</td>
<td>5.3</td>
<td>0.40 (0.29 – 0.54)</td>
<td>0.43 (0.32 – 0.59)</td>
<td>0.56 (0.40 – 0.79)</td>
<td>0.58 (0.41 – 0.81)</td>
</tr>
<tr>
<td>BT (nmol/L)</td>
<td>2.2</td>
<td>0.60 (0.46 – 0.78)</td>
<td>0.62 (0.46 – 0.83)</td>
<td>0.73 (0.52 – 1.01)</td>
<td>0.77 (0.55 – 1.07)</td>
</tr>
<tr>
<td>SHBG (nmol/L)</td>
<td>14.5</td>
<td>0.54 (0.41 – 0.71)</td>
<td>0.46 (0.33 – 0.64)</td>
<td>0.59 (0.42 – 0.85)</td>
<td>0.57 (0.40 – 0.81)</td>
</tr>
<tr>
<td>DHEA-S (µmol/L)</td>
<td>3.3</td>
<td>0.77 (0.60 – 0.98)</td>
<td>0.76 (0.56 – 1.02)</td>
<td>0.81 (0.58 – 1.13)</td>
<td>0.92 (0.66 – 1.29)</td>
</tr>
<tr>
<td>E2 (pmol/L)</td>
<td>22.8</td>
<td>1.16 (0.93 – 1.45)</td>
<td>1.16 (0.92 – 1.45)</td>
<td>1.17 (0.91 – 1.52)</td>
<td>0.97 (0.75 – 1.24)</td>
</tr>
</tbody>
</table>

* Metabolic syndrome was defined according to the NCEP definition

† Model 1: Odds ratio was adjusted for age, smoking, alcohol consumption, and physical activity

‡ Model 2: Odds ratio was adjusted for age, smoking, alcohol consumption, physical activity, and insulin levels (mU/L)

** Model 3: Odds ratio was adjusted for age, smoking, alcohol consumption, physical activity, BMI and waist circumference