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Cytochrome P450 enzymes that metabolize estrogens are
expressed in the mammary gland, uterus, brain and other
target tissues for estrogen action, and this results in the
formation of hydroxylated estrogens in these tissues. Estra-
diol metabolites formed in target tissuesat or nearestrogen
receptors may either be inactive or have important bio-
logical effects, and changes in the activities of estrogen-
metabolizing enzymes in target tissues may profoundly
influence estrogen action. Although some active estrogen
metabolites exert hormonal effects in target tissues by
interaction with the classical estrogen receptor, other meta-
bolites appear to elicit unique biological responses that are
not associated with activation of this receptor. Therefore,
some of the many actions of estradiol may not be caused
by estradiol per se but may result from the formation
of active estrogen metabolite(s) which function as local
mediators or may activate their own unique receptors or
effectors. This is an important area in need of more
research. The present paper represents a review of the
literature and perspectives by the authors on the functional
role of estrogen metabolism in target tissues.

Introduction

ation (23-27) and/o©-methylation (28-30). Members of the
cytochrome P450 family are the major enzymes catalyging
nicotinamide adenine dinucleotide phosphate (reduced form)
(NADPH*)-dependent oxidative metabolism of estrogens to
multiple hydroxylated metabolites (summarized in Figure 1
and Table I). Although most of the oxidative metabolism of
estrogens takes place in liver, some estrogen-metabolizing
isoforms of the cytochromes P450 that are usually expressed
at low or undetectable levels in liver aselectivelyexpressed

in certain extrahepatic tissues.

An early suggestion that an estrogen may exert some of its
effects because of metabolism in a target tissue came from
studies by Fishman and Norton (31). These investigators
demonstrated the 2-hydroxylation of estradiol by the rat brain.
This work, coupled with earlier studies showing an inhibitory
effect of 2-hydroxyestradiol on the inactivation of centrally
active catecholamines by catecl@imethyltransferase (32—
34), indicated that a locally formed estrogen metabolite may
exert a biological effect important for the action of the parent
hormone. Although research on the metabolism of estrogens
by target tissues has been pursued during the past 20 years,
and reviews on certain aspects of this topic have appeared
(30,35-40), the functional role or importance of the NADPH-
dependent hydroxylations of estradiol and estrone by multiple
cytochrome P450 enzymes in target tissues or cells is largely
unknown. In this paper, we have reviewed some of our data
as well as data by others which collectively suggest a general
concept that certain hydroxylated estrogen metabolites formed
by specific enzymes in target cells may possess important and
unigue biological functions that are not directly associated

Estrogens exert diverse biological effects in animals and
humans, and many of these effects result from a direct
interaction of the estrogen with an intracellular receptor that
activates the expression of genes encoding proteins with
important biological functions (1-4). One of the most important
and notable effects of estrogens is a superpotent mitogenic
action in hormone sensitive tissues such as the uterus (5,6)
and breast (7-9). Prolonged exposure of target tissues or cells
to excessive mitogenic stimulation by natural or synthetic
estrogens has long been considered an important etiologica
factor for the induction of estrogen-associated cancers in
experimental animals (10,11) and humans (10,12-18).
Estrogenic hormones are eliminated from the body by
metabolic conversion to hormonally inactive (or less active)
water-soluble metabolites that are excreted in the urine and/or
feces. The metabolic disposition of estrogens includes oxidative
metabolism (largely hydroxylations; reviewed in ref. 19) and

conjugative metabolism by glucuronidation (20-22), sulfon-

*Abbreviations: NADPH, B-nicotinamide adenine dinucleotide phosphate
(reduced form); TCDD, 2,3,7,8-tetrachlorodiberzdioxin; COMT, catechol-
O-methyltransferase; BFHSD, 1B-hydroxysteroid dehydrogenase.
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Fig. 1. Sites of oxidative metabolism of estradiol by NADPH-dependent
cytochrome P450 enzymes. Major hepatic pathways of estradiol metabolism
(2-hydroxylation, 16-hydroxylation, and estrone formation) are indicated

by the solid arrows. Additional information about oxidative estradiol
metabolism is summarized in Table I.
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Table I. Hydroxylated and keto metabolites of &@stradiol (estradiol) and estrone. All estrogen metabolites listed were found in biological samples

(e.g. tissues, blood, bile, urine) or were formed duiimgitro incubations of estrogens with enzyme preparations from animals or humans

Positions of Estrogen metabolites formed Major references cited

oxidation
Systematic name Common name

C-1 1,3,5(10)-Estratrien-1,3-diol-17-one 1-Hydroxyestrone 201

C-2 1,3,5(10)-Estratrien-2,3-diol-17-one 2-Hydroxyestrone 463
1,3,5(10)-Estratrien-2,3, B#riol 2-Hydroxyestradiol 52, 464
1,3,5(10)-Estratrien-2,3, 061 7B-tetrol 2-Hydroxyestriol 465

C-4 1,3,5(10)-Estratrien-3,4-diol-17-one 4-Hydroxyestrone 466, 467
1,3,5(10)-Estratrien-3,4, B#riol 4-Hydroxyestradiol 30, 53
1,3,5(10)-Estratrien-3,4, 561 7B-tetrol 4-Hydroxyestriol 52

C-6 1,3,5(10)-Estratrien-3p6diol-17-one @-Hydroxyestrone 58, 468
1,3,5(10)-Estratrien-3fBdiol-17-one @-Hydroxyestrone 193, 468
1,3,5(10)-Estratrien-3-0l-6,17-dione 6-Ketoestrone 466
1,3,5(10)-Estratrien-3¢6 1 73-triol 6a-Hydroxyestradiol 193
1,3,5(10)-Estratrien-3[%1 7B-triol 6[3-Hydroxyestradiol 193, 469
1,3,5(10)-Estratrien-3, B¢diol-6-one 6-Ketoestradiol 111, 469
1,3,5(10)-Estratrien-3,1261 7B-triol-6-one 6-Ketoestriol 111, 470, 471
1,3,5(10)-Estratrien-3¢6 16a,173-tetrol 60-Hydroxyestriol 470

C-7 1,3,5(10)-Estratrien-3q7diol-17-one ‘T-Hydroxyestrone 47, 471
1,3,5(10)-Estratrien-3f#diol-17-one B-Hydroxyestrone 58
1,3,5(10)-Estratrien-3¢7, 1 73-triol 7a-Hydroxyestradiol 111, 471
1,3,5(10)-Estratrien-3{X17B-triol 7B-Hydroxyestradiol 58
1,3,5(10)-Estratrien-3,B¢diol-7-one 7-Ketoestradiol 58
1,3,5(10)-Estratrien-3¢7, 16a,173-tetrol Ta-Hydroxyestriol 471

Cc-11 1,3,5(10)-Estratrien-3,f4diol-17-one 1B-Hydroxyestrone 472
1,3,5(10)-Estratrien-3-0l-11,17-dione 11-Ketoestrone 472
1,3,5(10)-Estratrien-3, BL17B-triol 11B-Hydroxyestradiol 472
1,3,5(10)-Estratrien-3, B¢diol-11-one 11-Ketoestradiol 472
1,3,5(10),11-Estratrien-3, &r7diol* A(11)-Dehydroestradiol-1v 473
1,3,5(10),9,11-Estratrien-3-ol-17-dhe A(9,11)-Dehydroestrone 47

C-14 1,3,5(10)-Estratrien-3,&i4diol-17-one 14-Hydroxyestrone 474, 475
1,3,5(10)-Estratrien-3, 24 173-triol 14a-Hydroxyestradiol 111, 474

C-15 1,3,5(10)-Estratrien-3,f&5diol-17-one 1%-Hydroxyestrone 476
1,3,5(10)-Estratrien-3,&diol-17-one 1B-Hydroxyestrone 47
1,3,5(10)-Estratrien-3, 251 73-triol 15a-Hydroxyestradiol 201, 111, 470, 477
1,3,5(10)-Estratrien-3,0516a,17B-tetrol 150-Hydroxyestriol (estetrol) 202, 472

C-16 1,3,5(10)-Estratrien-3,&ediol-17-one 16-Hydroxyestrone 478-480
1,3,5(10)-Estratrien-3,Bdiol-17-one 1@-Hydroxyestrone 481, 482
1,3,5(10)-Estratrien-3-0l-16,17-dione 16-Ketoestrone 483-485
1,3,5(10)-Estratrien-3, 2§ 173-triol 16a-Hydroxyestradiol (estriol) 483, 486
1,3,5(10)-Estratrien-3, 51 73-triol 16-Epiestriol 487-490
1,3,5(10)-Estratrien-3, B¢diol-16-one 16-Ketoestradiol 480, 491
1,3,5(10)-Estratrien-3, %1 7a-triol 16,17-Epiestriol 490, 492

C-17 1,3,5(10)-Estratrien-3,t&r7diol 17a-Estradiol 493, 494
1,3,5(10)-Estratrien-3, 261 7a-triol 17-Epiestriol 492

C-18 1,3,5(10)-Estratrien-3,18-diol-17-one 18-Hydroxyestrone 477, 495, 496

“Examples of dehydrogenated estrogen metabolites.

with the parent hormone, but are important for the overallestrogens catalyzed mainly by cytochrome P450 enzymes,
action of the estrogen. Based on a review of data scattered there are also several other pathways of estrogen metabolism
the literature, we suggest that some of the effects exerted by target cells (such as sulfonation, desulfonation, and intercon-
active estrogen metabolites may be mediated by specificersion between estradiol and estrone) which have been quite
intracellular receptors or effectors which are different fromwell studied in the past. It is known that desulfonation of
the classical estrogen receptor. In this context, it is noteworthgstrogen sulfates by sulfatase or aromatization of androgens
that a novel estrogen receptor with unknown function(s) haby aromatase in target cells contributes substantially to the
recently been identified in rat prostate and ovary (41) and iformation ofparentestrogen in these cells and thereby enhances
is likely that additional isoforms of the classical estrogenthe hormonal stimulation of the classical estrogen receptor. In
receptor also exist (42—45). Studies on possible interactions a@ontrast, metabolism of estrogens by conjugative enzymes
the multiple estrogen metabolites with these novel receptorée.g. sulfotransferase) present in target cells may decrease the
are needed. hormonal activity of estrogens by lowering the intracellular
In addition to the NADPH-dependent hydroxylation of concentration of the parent hormone (25,35,36,39). Although
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a major focus of this paper is on NADPH-dependentfunction of catecholamines (32-34). In addition to the presence
hydroxylation of estrogens in extrahepatic target tissues, thef catechol estrogen-forming enzymes in the brain, studies
importance of several other metabolic pathways for the metawith a partially purified cytochrome P450 fraction from rat
bolism of estrogens in these target tissues has also bedmain revealed high catalytic activity for theréydroxylation
discussed. of estradiol, and the partially purified enzyme preparation also
catalyzed to a lesser extent the 2-, 4B8-,6150- and 16-
hydroxylations of estradiol (97). The functional role of these
hydroxylated estrogen metabolites formed in the brain is not
known. It is noteworthy that treatment of rats with ethanol
Endogenous estrogens (estradiol and estrone) can lieduces the levels of certain cytochromes P450 in the brain
hydroxylated at multiple positions (labeled with arrows in (100), but the physiological significance of this effect for the
Figure 1) by NADPH-dependent cytochrome P450 enzymesmetabolism and action of estrogens in the brain is not known.
Table | summarizes the presence lofdroxylatedand keto Possibly because of very low levels of conjugating enzymes
metabolites of estradiol and/or estrone in biological sample#n certain extrahepatictarget organsjn situ metabolism of
(e.q. tissues, blood, urine) or the formation of these metabolitesstrogens may result in accumulation of significant amounts
during in vitro incubations of estrogens with enzyme prepara-of unconjugated estrogen metabolites in these target tissues.
tions from animals or humans. For instance, incubation oPrevious studies showed that very high levels of catechol
[4-1“Clestradiol and NADPH with liver microsomes (a crude estrogens are present in the pituitary, hypothalamus, and
preparation containing many cytochrome P450 isozymes) frorgerebral cortex (30). High concentrations of-Bydroxyestra-
adult male rats resulted in the formation of up to 20 detectableliol, 16ua-hydroxyestradiol (estriol) and 2-methoxyestradiol
estrogen metabolites (46). Similar formation of multiple were present in human follicular fluid specimens, and several
estrogen metabolites was observed after incubatinfG3#  additional metabolites were also observed (107).
estrone and NADPH with female hamster liver or kidney The observation of multiple pathways for estrogen
microsomes (47) or after incubating fAC]estrone or hydroxylation in liver and, in particular, in estrogen target
[4-YC]estradiol and NADPH with female mouse liver micro- organs raises the important question of why so many estrogen
somes (48). Since catechol estrogens can undergo metabofitetabolites are formed? As discussed below, estrogen-
O-methylation (30,49), several additional methoxyestrogermetabolizing enzymes in liver and extrahepatic target tissues/
metabolites would have been formed if a methylating enzymeells are under regulatory control by endogenous factors such
system had been included during the incubations. as sex hormones (83, 108) and by environmental substances
Several extrahepatic target tissues or cultured cells froluch as drugs, pesticides, polycyclic aromatic hydrocarbons,
target tissues express estrogen-hydroxylating enzyme activitiegd 2,3,7,8-tetrachlorodibengedioxin (TCDD) (70,75,108—
(31,47,50-82). At least nine different isoforms of cytochrome111). We believe that many of the multiple estrogen metabolites
P450 (some are known to metabolize estradiol) have beehat are formed in liver or estrogen target tissues may have
detected in the mammary gland of the female rat (83), angnportant but unrecognized biological effects that are neces-
several isoforms in rat and human breast are subject tgary for some of the actions of estrogens.
developmental and endocrine regulation (83,84). Recent studi Stvd lati
showed the presence of high levels of estradiol 4-hydroxylasé” ydroxylation
activity (mediated by cytochrome P450 1B1) in human uterine2-Hydroxylation of estradiol or estrone to a catechol is a major
myoma (80), human breast cancer tissue (81) and a humdnetabolic pathway in the liver whereas 4-hydroxylation to a
breast cancer cell line (70,75,85,86). In addition, a uniqudlifferent catechol represents a quantitatively minor path-
estradiol 4-hydroxylase activity is expressed in the male Syriavay (usually <15% of 2-hydroxylation) in this organ
hamster kidney (76,77,79,82), a target organ for estroger(46,77,108,112). Many different isoforms of cytochrome P450
induced carcinogenesis (87,88). Because of these observatiog@ntribute to the 2-hydroxylation of estradiol in the liver. In
and the strong carcinogenic activity of 4-hydroxyestradiol inrats, hepatic 2-hydroxylation of estradiol is catalyzed by
a hamster kidney tumor model (88,89), this estrogen metaboliteytochromes P450 1A2, 2B1/2B2, 2C6, 2C11, C-M/F (one or
is suspected of playing a role in the development of estrogerimore members of the 2D family) and the 3A family
associated cancers in target organs of animals and possib($08,111,113-117). In humans, cytochrome P450 1A2 and
humans. In contrast to the carcinogenic potential of 4-hydroxythe 3A family are major enzymes fdnepatic estrogen 2-
estradiol (88,89), 2-hydroxyestradiol has little or no carcino-hydroxylation (112,118-121). It is of considerable interest that
genic activity (88,89), and 2-methoxyestradiol (a@- there are large interindividual differences in the 2-
methylated product of 2-hydroxyestradiol) exerts potent cytohydroxylation of estradiol or estrone by human liver samples
static (90-95) and antiangiogenic effects (93,95) which may112,118,119) and these inter-individual differences may be
inhibit the development of estrogen-induced cancers. reflected by person-to-person differences in estrogen action in
Multiple cytochromes P450 are present and are selectivelglifferent individuals.
expressed in certain areas of the brain (96—-103), but their role NADPH-dependent 2-hydroxylation of estradiol and/or
for metabolism of estrogens is largely unknown. Enzymes thagstrone has been observed with microsomes prepared from
catalyze the formation of catechol estrogens have been detectedrious extrahepatic tissues such as uterus (64,72,73,80), breast
in the central nervous system of rats (31,51-53,55-57,66) and@4,81,122), placenta (50,63,80), kidney (76,79,82), brain
the levels of these enzymes in certain regions of the brain arg81,51,53,55-57,59) and pituitary (53,66). Catechol estrogen
markedly increased (up to 3.5-fold) during lactation (57). Itformation by microsomal monooxygenase(s) from human term
has been postulated that changes in the formation of catechplacenta is predominantly 2-hydroxylation and the 4-
estrogens in the central nervous system may play a role ihydroxylation is a very minor metabolic pathway in this tissue
gonadotropin release (54,104), ovulation (105,106), and th€0,63,80). Based on studies with selective inhibitors and on

3

Multiple pathways of NADPH-dependent estrogen
hydroxylation
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studies using selectively expressed human aromatasearkedly increased in the anterior pituitary and hypothalamus
(cytochrome P450 19), the 2-hydroxylation of estradiol inof female rats during lactation (57). Additional studies suggest
human placenta is likely catalyzed by aromatase (123). Imnhat 2-hydroxyestradiol and 2-hydroxyestrone modulate the
contrast to these observations, the 2-hydroxylation of estradiahteraction of the neurotransmitter dopamine with its receptor
by MCF-7 human breast cancer cells treated with TCDD(151,152), and this may be a mechanism responsible for
appears to be predominantly catalyzed by cytochrome P45f&gulating prolactin secretion (149,150) and other neuroendo-
1A1/1A2 (70,75). Since cytochrome P450 3A4 (which hascrine effects of dopamine. Reports have appeared suggesting
high estradiol 2-hydroxylase activity) is present in severalthe presence of a specific membrane binding site for 2-
extrahepatic tissues (83,124,125), it is believed that thisiydroxyestradiol in the anterior pituitary and endometrial cells,
cytochrome P450 isoform may contribute substantially tobut these observations need to be considered in more detail
estradiol 2-hydroxylation in these tissues. (153-156). The membrane estrogen binding site in cultured

In addition to the NADPH-dependent 2-hydroxylation of GH3 pituitary tumor cells is suspected of playing a role in
estradiol and estrone, the organic hydroperoxide-dependentusing the rapid release of prolactin (156). (v) 2-Hydroxyestra-
peroxidatic pathway may also contribute significantly to thediol is present in the ovarian follicular fluid of humans (107)

2- and 4-hydroxylation of these estrogens in liver (126) andand horses (157). An autocrine/paracrine regulatory role for
estrogen target tissues (63,76,127). This peroxidatic pathwatis estrogen metabolite in follicular function has been proposed
of catechol estrogen formation appears to be catalyzed largel158). (vi) 2-Hydroxyestradiol and 2-hydroxyestrone (like 4-
by cytochrome P450 enzymes (40,126). It will be of interesthydroxyestradiol) can undergo metabolic redox cycling to
to identify the cytochrome P450 isoforms that have highgenerate free radicals such as superoxide and the chemically-
activity for the peroxidatic formation of catechol estrogens inreactive estrogen semiquinone/quinone intermediates (159-
liver or estrogen target tissues, and to ascertain the physia61) which may damage DNA and other cellular constituents
logical significance of this peroxidatic pathwayvivo. (162-166). Despite their potential for undergoing metabolic

Although estradiol and estrone are extensively 2-redox cycling and generating free radicals, 2-hydroxyestradiol
hydroxylated in liver and extrahepatic tissues, the concentraand 2-hydroxyestrone (but not 4-hydroxyestradiol) have little
tions of unconjugated 2-hydroxyestradiol and 2-hydroxyestroner no tumorigenic activity towards the male Syrian hamster
metabolites are very low in the systemic circulation (128-130kidney (88,89). Moreover, some studies indicate that treatment
and in several tissues (131,132), which is probably due t@f rodents with certain inducers of estradiol 2-hydroxylation
rapid conjugative metabolisn®¢methylation, glucuronidation, may decrease spontaneous tumorigenesis in estrogen-sensitive
sulfonation, et followed by urinary excretion. tissues and this is discussed later.

Several important consequences of locally-formed 2-hydro- The lack of carcinogenic activity of 2-hydroxyestradiol
xyestradiol and 2-hydroxyestrone have been suggested: (§nd 2-hydroxyestrone (but not 4-hydroxyestradiol) is possibly
Both catechol estrogens can bind to the classical estrogefecause the 2-hydroxylated estrogen metabolites, when com-
receptor, but with a markedly reduced binding affinity pared with 4-hydroxyestradiol, have a faster rate of metabolism
(17,30,133,134), and these metabolites possess much weaksf catecholo-methyltransferase-catalyzedO-methylation
hormonal potency as compared with the parent hormongi67,168), a more rapid clearande vivo (130,169), and
estradiol (30,135-138). 2-Hydroxyestrone was reported t@ossess weaker hormonal potency in estrogen target tissues
partially antagonize the growth-stimulatory effect of estradiol(30,134,136-140,170). Moreover, 2-methoxyestradiol (a prod-
in cultured human MCF-7 breast cancer cells (139,140)yct of subsequent enzymatizmethylation of 2-hydroxyestra-
This growth-inhibitory effect of 2-hydroxyestrogens (at high diol) is a very potent inhibitor of tumor cell proliferation (90—
concentrations) may be due to the interaction of these comss) and angiogenesis (93,95), which may be an important
pounds with the estrogen receptor (139) and/or due to theleason for the lack of carcinogenicity of 2-hydroxyestradiol
metabolic redox cycling to generate reactive estrogen quinongg vivo.
and free radicals which are highly cytotoxic (discussed in ref. .
141). (ii) By serving as a co-oxidant, 2-hydroxyestr::1dio|4'Hydroxylat'c’n
strongly stimulates the metabolic cooxidation of arachidonicAlthough 2-hydroxylation of estradiol and estrone is the
acid to prostaglandins in the uterus during certain periods oflominant pathway for catechol estrogen formation in liver
pregnancy (142—145) and thereby may modulate the physiomicrosomes, small amounts of 4-hydroxylated estradiol and
ogic effects of arachidonic acid and prostaglandins duringstrone are also formed (46,77,82,108,111,112). In rat liver
pregnancy (146). (iii) 2-Hydroxyestradiol inhibits cateci»l- microsomes, 4-hydroxylation of estradiol is catalyzed by
methyltransferase-catalyze@methylation of catecholamines cytochromes P450 1A2, 2B1/2, and the 3A family (108,111).
(32—34), which may exert a modulatory effect on the neurophy!n human liver microsomes, the cytochrome P450 3A family
siological/pharmacological effects of catecholamines in thds believed to play a major role in the 4-hydroxylation of
central nervous system (147). In addition, catechol estrogergstradiol (112,121).
may also modulate intracellular signal transduction (148). It In contrast to the above observations indicating that 4-
is possible that these modulatory effects of catechol estrogerftydroxylation of estrogens is a minor pathway for catechol
in the brain may play a role in the feeling of well-being that estrogen formation in liver, recent studies showed that 4-
results from administration of estrogen to ovariectomized ohydroxylation of estradiol is a dominant pathway for catechol
post-menopausal women. (iv) Administration of 2-hydroxyes-estrogen formation in severaktrahepatictarget tissues. For
tradiol alters the secretion of prolactin (149,150) and thenstance, an estradiol 4-hydroxylase activity is expressed in rat
secretion of luteinizing hormone/follicle-stimulating hormone pituitary which has little or no activity for 2-hydroxyestradiol
(LH/FSH) by the anterior pituitary (135). Consistent with a formation (66), and an estradiol 4-hydroxylase activity with a
role of locally-formed catechol estrogens in neuroendodow K, (2-5uM) was observed in human uterine myometrial
crine regulation, estradiol 2- and 4-hydroxylase activity wasand myoma tissues (80). Recent studies indicate that

4
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cytochrome P450 1B1 is an important enzyme for the 4-may damage DNA and other cellular constituents (162—165),
hydroxylation of estradiol in human breast and uterus (80,86)induce cell transformation (166) and initiate tumorigenesis
Expression of the human P450 1B1 geneSaccharomyces (141,177,178). (viii) 4-Hydroxyestradiol is a strong carcinogen
cerevisiaeproduced an enzyme that catalyzed the 4- and 2towards the hamster kidney (~100% tumor incidence) under
hydroxylation of estradiol withK,, values of 0.7-0.§itM, and  conditions where 2-hydroxyestradiol is not carcinogenic
turnover numbers of 1.39 and 0.27 nmol product/min/nmol(88,89). The strong carcinogenicity of 4-hydroxyestradiol may
P450, respectively (86). In addition to the NADPH-dependenbe due to its potential genotoxicity (redox cycling plus reactive
pathway of catechol estrogen formation, an organic hydropersemiquinone intermediate) as mentioned above and its potent
oxide-dependent peroxidatic pathway may also contributgrowth stimulatory effect as recently demonstrated with cul-
significantly to the 4- and 2-hydroxylation of estradiol andtured kidney proximal tubule cells (179-181). Although direct
estrone in liver (126) and estrogen target organs (63,76,127njection of estrone-3,4-quinone (derived from 4-hydroxy-
The different pathways for metabolic formation of 4-hydroxy- estrone) into the rat mammary gland did not induce the
estradiol by several estrogen target tissues was reviewed earlirmation of mammary tumors (182), injection of this reactive
by Weisz (38,40). estrogen metabolite into 12-day-old male B6/C3/F1 mice four
Selective expression of estradiol 4-hydroxylase activity intimes daily for 4 days did induce hepatomas (178). The ability
target cells does not inactivate the parent estrogen, but mayf 4-hydroxyestradiol or estrone-3,4-quinone to cause kidney
be a mechanism for maintaining strong hormonal activity inor liver tumors in certain animal models is noteworthy, and
these cells or for exerting other unknown biological effectsimplicates 4-hydroxylated estrogens as carcinogenic meta-
that are not shared with estradiol. As summarized belowbolites.
several important functions of 4-hydroxyestradiol are already Recent studies suggest that high levels of estradiol 4-
known or have been suggested: (i) 4-Hydroxyestradiol ishydroxylase activity in estrogen target tissues may play import-
similar to estradiol in its ability to bind to and activate the antroles in the development of estradiol-induced tumorigenesis
classical estrogen receptor (30,133,134,170). Interestingly, theeviewed in refs 141 and 177). A high level of estradiol 4-
interaction of this estrogen metabolite with the estrogen recepiydroxylase activity is expressed in the kidney of male Syrian
tor appears to occur with a reduced dissociation rate compardthmsters (76,77,79,82), the uterus of CD-1 mice (64,73), and
with estradiol (134,171), suggesting that the association of 4the pituitary of rats (66), which are all target organs susceptible
hydroxyestradiol with the estrogen receptor may last longeto estrogen-induced carcinogenesis (11,87,88,183,184). Inter-
than that for its parent hormone, estradiol. (ii) 4-Hydroxyestra-estingly, each of the above three target organs contains very
diol is hormonally active for stimulating uterine growth when high concentrations of endogenous catecholamines (185) which
injected into animals (30,170,172), but its uterotropic potencymay provide significant inhibition of catech@-methyltrans-
is slightly weaker than that of estradiol (172), possibly due tdferase-catalyze®-methylation of 4- and 2-hydroxyestradiol
a faster metabolic clearance than estradiol. It is of considerabli@ vivo. Moreover, catechoB-methyltransferase-catalyzé&ot
interest that addition of 4-hydroxyestradiol to surviving rat or methylation of 4-hydroxyestradiol is inhibited by 2-hydroxyes-
mouse uterine segmeritsvitro was much more effective than tradiol, whereas thé-methylation of 2-hydroxyestradiol is
estradiol in stimulating the incorporation of“Clformate  not inhibited by 4-hydroxyestradiol (168). Therefore, it is
into protein (173). Similarly, another study reported that 4-likely that 4-hydroxyestradiol will accumulate in these target
hydroxyestradiol had stronger activity than estradiol in inducingorgans because of inhibition of it®-methylation and also
progesterone receptor formation in the rat pituitary undeibecause of its rapid formation. 4-Hydroxyestradiol can mediate
experimental conditions where 4-hydroxyestradiol and estradamage to cellular DNA and other macromolecules according
diol induced a similar level of nuclear estrogen receptor (134)to the mechanism depicted in Figure 2. Moreover, the potent
(iif) Administration of 4-hydroxyestradiol (or 2-hydroxyestra- mitogenic effects of estradiol and its hormonally active 4-
diol) alters the secretion of luteinizing hormone/follicle-stimu- hydroxylated metabolite formed locally in target cells may
lating hormone (LH/FSH) by the anterior pituitary (135). (iv) stimulate the growth of transformed cells, which is believed
4-Hydroxyestradiol (like estradiol) supports embryo implanta-to be a necessary component for the full development of
tion in mice (105,174,175). An increased selective expressiomstrogen-associated cancers (10,17,179-181).
of estradiol 4-hydroxylase activity occurs in the pig blastocyst It is of great interest that human uterine myoma expresses
during the preimplantation period (61,65,67,176) and in theestradiol 4-hydroxylase activity to a greater extent than 2-
uteri of rabbits and mice during embryo implantation (72,73).hydroxylase activity, and the former activity was much higher
These observations suggest a possible role of 4-hydroxyestrax tumors than in the ‘normal-appearing’ surrounding myome-
diol during embryo implantation. (v) Like 2-hydroxyestradiol, trium (80). Similarly, elevated estradiol 4-hydroxylase activity
4-hydroxyestradiol also serves as a cooxidant and strongligas also been observed in human breast cancer tissue compared
stimulates the metabolic cooxidation of arachidonic acid tato normal breast tissue (81). In line with this observation, a
prostaglandins in the uterus during certain periods of pregnangyrevious study reported that 4-hydroxyestradiol appears to be
(142-145). This may modulate the physiological effects ofthe most abundant estrogen metabolite (4.16 nmol/g tissue) in
prostaglandins during pregnancy (146). (vi) 4-Hydroxyestra-an extract from a human breast cancer specimen, and several
diolinhibits catechol®-methyltransferase-catalyz&€dmethyl-  additional metabolites were also observed (186). More studies
ation of catecholamines (32—34), which may exert a modulatorare needed to confirm the presence of high tissue levels of
effect on the neuropsychologic/pharmacologic effects of cated4-hydroxyestradiol in human breast cancers. These above
cholamines in the central nervous system (147). (vii) 4-interesting results (described in refs 80,81,186), together with
Hydroxyestradiol undergoes metabolic redox cycling (159-studies indicating strong tumorigenic activity for 4-hydroxyes-
161) to generate free radicals such as superoxide and theadiol in animals, are consistent with a possible role of
chemically-reactive estrogen semiquinone/quinone intermetabolically formed 4-hydroxyestradiol in the genesis of
mediates (shown in Figure 2). These metabolic intermediatesstrogen-associated cancers.
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Fig. 2. Metabolic redox cycling of 4-hydroxyestradiol catalyzed by cytochrome P450 enzymes. Although we have only shown the structure of
4-hydroxyestradiol, 2-hydroxyestradiol can also undergo a similar metabolic redox cycling.

Several recent studies have attempted to characterifibroblasts or JEG-3 chorion carcinoma cells is not stimulated
cytochrome P450 isoform(s) with high estradiol 4-hydroxylaseby treatment with 1 pM to 1uM of TCDD although the
activity in estrogen target tissues, as well as their distributiorexpression of P450 1A1 mRNA was markedly induced (189).
and regulation. In microsomes from MCF-7 human breastt will be of considerable interest to characterize the selective
cancer cells treated with TCDD or from human uterine myomagexpression and differential regulation of cytochrome P450
estradiol 4-hydroxylation is catalyzed predominantly by alBl1, and other cytochrome P450 isoforms with estradiol 2-
newly identified member of the cytochrome P450 1 family,and 4-hydroxylase activity in different cell types in human
designated as cytochrome P450 1B1 (80,85,86,187). As indbreast. Such studies may help reveal the functional roles of 2-
cated above, a recent study showed that human cytochronaad 4-hydroxylated estrogens in the physiology and patho-
P450 1B1 isolated from a yeast expression system catalyzgghysiology of the human breast.
both 4- and 2-hydroxylation of estradiol with lo, values .
(<1 uM), but the V. for the 4-hydroxylation of estradiol is 6- and 7-hydroxylation . .
~4-fold higher than theVi., for the 2-hydroxylation of The NADPH-dependent. 6-hydroxylation of estradiol and
estradiol (86). estrone by liver from animals and humans has been known

In mouse or human tissues examined, the mRNA forfor 40 years (193). Recent studies indicate that cytochrome
cytochrome P450 1B1 is expressed in many different tissue8450 2B1/2B2 in rat liver microsomes is a major enzyme
or cells (liver, kidney, brain, placenta, breast, uterus, prostatéesponsible for the®- and §-hydroxylation of estradiol and
and lymphocytes), and it is also expressed in various steroidodghat cytochrome P450 1A1/1A2 also catalyzes the hepatic
enic tissues such as adrenal g|and and ovary (188_19®G- and h—hydroxylatlon reactions (117) Additional studies
Cytochrome P450 1B1 mRNA appears to be one of théhowed that treatment of female rats with phenobarbital or
major cytochrome P450 mRNAs in uterine endometrium andlexamethasone markedly stimulated the hepatic#d -
mammary gland (expressed mainly in stromal cells) (187, 18g)ydroxylation of estradiol and that treatment of rats with
190, 191). In contrast, the mRNA for cytochrome P450 1A13-methylcholanthrene stimulated the hepatia- Gand -
(which catalyzes the 2-hydroxylation of estradiol to a muchhydroxylation of estradiol (111). It should be noted that
greater extent than its 4-hydroxylation) is expressed mainly ifytochromes P450 1A1 and P450 2B1/2 in human liver are
epithelial cells of mouse uterine endometrium and mammaryery low unless the animals or human subjects are treated
gland (188,190). The expression of cytochrome P450 1Bwith inducers.
mRNA in several cultured mammary cell lines is not correlated The presence of large amounts ofi-Bydroxyestradiol
with the presence of the classical estrogen receptor (191). (13.2+ 0.9 ng/ml, from 11 follicular fluid specimens), in

The expression of cytochrome P450 1B1 mRNA is regulatedddition to several other estrogen metabolites, was observed in
by multiple endogenous and exogenous factors. In cultureuman ovarian follicular fluid (107).c6 and #&-hydroxylated
mouse embryo fibroblasts, the expression of cytochrome P450etabolites are major biotransformation products of estrone
1B1 mRNA can be regulated by cyclic AMP, adrenocortico-and estradiol in pig uterus (58,78). Pig endometrial cells
tropic hormone (ACTH), TCDD, and polycyclic aromatic effectively catalyze the & and ‘®t-hydroxylation of estrone
hydrocarbons (187,191). The expression of cytochrome P45@ith low K, values €1 uM), and these estrogen-metabolizing
1B1-dependent estradiol 4-hydroxylase activity in MCF-7enzyme activities were inhibited by cytochrome P450 inhibitors
human breast cancer cells is stimulated by treatment witlsuch as ketoconazole (78)a-81ydroxylation of estradiol by
TCDD (70,85,86), or indolo[3,2-b]carbazole (86), a dietary-microsomes from MCF-7 human breast cancer cells is markedly
derived Ah-receptor ligand (192). However, the expression ostimulated by exposure of MCF-7 cells to TCDD (70,75), and
cytochrome P450 1B1 mRNA in cultured human primarythe addition of anti-rat cytochrome P450 1A1/1A2 IgG to the
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incubation mixture inhibited by ~70% theoéhydroxylation On days 12 and 13 of pregnancy in pigs, peri-implantation
as well as the 2- and tBhydroxylation of estradiol (75). In blastocysts selectively expressed estradiobi-hydroxylase
additional studies, a partially purified cytochrome P450 enzymectivity at 15- to 70-fold higher levels than were expressed
from rat brain was shown to catalyze thex-6and @-  during other days of pregnancy (218). The biological signific-
hydroxylation of estradiol, and this enzyme preparation als@nce of this remarkable and short-lived increase of estradiol
catalyzed the formation of 2-hydroxyestradiol, 4-hydroxy-15a-hydroxylase activity is not known. Since the dot5
estradiol, 6-ketoestradiol, #5hydroxyestradiol and X6 hydroxylation of estradiol results in metabolites that have
hydroxyestradiol (97). 6- or 7-hydroxylated metabolites of<1% of estradiol’s binding affinity for the classical estrogen
estrone or estradiol do not have appreciable binding affinitieseceptor and little or no estrogenic activity (170,219), perhaps
for the classical estrogen receptor, and their uterotropic activityhe rapid metabolic conversion of estradiol taxiBydroxyes-
is very weak (194,195). tradiol and estetrol protects certain target cells of the embryo
It is noteworthy that a preliminary study by Takagial. and developing infant from exposure to very high concentra-
with two chemically synthesized analogs of estrogen-6-sulfatesons of endogenous estrogenic hormones. Alternatively, these
(pyridinium 3-methoxyestra-1,3,5(10)-triene-§l and -&3-yl 150-hydroxylated estrogens may exert other important yet still
sulfates) suggest that a highly reactive benzylic carbocationnrecognized effects. Further research is needed to determine
intermediate (at the C-6 position) can be generated in aqueodie physiological function(s) of IBhydroxyestradiol and
solution (196), a process which is similar to the formation ofestetrol.
chemically reactive intermediates from sulfonated benzyli . ;
hydroxyl groups on safrole, estragole or 7,12—dimethyl—c16a Hydroxylation L )
benzpjanthracene (197-199). Althougla6and @-hydroxyl- In male and female rats, the constitutively expressed hepatic
ations of estrogens are quantitatively significant pathways igytochrome P430. (thought to be a member of the 2D
rodents and humans, it is not known whether sulfonation (af@Mily; see ref. 116) has high activity for the 2- andai6
the C-6 position) of 8- or 63-hydroxylated estradiol or estrone hydroxylation of estradiol and weak activity fon§ 63- and
metabolites takes placin vivo. If estradiol- or estrone-6- 190-hydroxylation of estradiol and for the conversion of
sulfate are formed, they may be highly reactive and genotoxic€Stradiol to estrone (114). Cytochrome P450 2C11, a male
Therefore, it will be of interest to determine the relative rateSPecific isoform in rats, also catalyzes estrogena-16
of metabolic formation of 6-sulfonated estrogen metabolitedydroxylation (115) and liver microsomes from male rats
in the body (particularly in estrogen target tissues or cellsfatalyze the 1é-hydroxylation of estradiol to a much greater
and to evaluate the potential genotoxicity or mutagenicity ofeXtent than liver microsomes from female rats (46). These

6-sulfonated estrogens in these cells. results suggest that the male specific cytochrome P450 2C11
i may have an important role in the d#ydroxylation of
150-Hydroxylation estrogens. Studies with prototype liver microsomal enzyme

A substantial amount of estrogend-biydroxylase activity is  inducers indicate little or no induction of thedydroxylation
present in certain microorganisms (200), in the human adrenalf estradiol in female rats treated with phenobarbital, 3-
gland (201,202) and in human fetal liver (203). However,methylcholanthrene, dexamethasone, isoniazid or clofibrate
little or no 150-hydroxylated metabolite was detected during(111). A preliminary report by Blumet al. suggests that a
incubations of estradiol with microsomes from non-fetal humamew member of the cytochrome P450 2D family may have an
liver. In male rats, 18-hydroxylation is a significant metabolic important role in the 1&-hydroxylation of estrogens in mouse
pathway (46,204) which has been attributed to the malemammary cells (220). In humans, a recent study showed that
specific cytochrome P450 2C13 (115,204). It has been reportezytochrome P450 3A4 has strong catalytic activity for estrone
that male (but not female) rats metabolize estradiol ta-15 16a-hydroxylation (119).
hydroxyestrone and bbhydroxyestradiol that are excreted 16a-Hydroxylated estrogen metabolites were found to pos-
into the bilein vivo (204). A recent study from our laboratory sess some unique properties: (i) cdBydroxyestrone and
showed that treatment of immature or adult female rats witHL6a-hydroxyestradiol, like 4-hydroxyestradiol, retain potent
3-methylcholanthrene increased hepatic microsomal estradiblormonal activity by activating the classical estrogen receptor
15a-hydroxylase activity by 5- to 16-fold and cytochrome (221). (ii) A covalent reaction of I6-hydroxyestrone with the
P450 1A1 was the predominant isoform responsible for thestrogen receptor has been reported (222), and there is a
increased 1&-hydroxylation reaction (111). preliminary study suggesting that d#ydroxyestrone may
150-Hydroxyestrone is present in large amounts in humaractivate classical estrogen receptor-mediated oncogene expres-
feces during pregnancy (205). Several earlier studies suggestsibn and growth stimulation for a prolonged period (223).
that the fetal-placental unit is a principal producer ofid5 Mechanistically, a Schiff base is formed fromot-&ydroxyes-
hydroxylated estrogens (206—209). In the late stages of humarone by reacting with amino groups in proteins (illustrated in
pregnancy, urinary I-hydroxyestriol (15,160-dihydroxyes-  Figure 3; ref. 224). In principle, T6hydroxyestrone may also
tradiol; estetrol) is excreted in amounts that exceed those akact covalently with other amino-containing macromolecules
all other estrogens except déydroxyestradiol (estriol) and (e.g. DNA), but this has not been described.
16a-hydroxyestrone (210-214). Large amounts of estetrol have Bradlow, Fishman and their colleagues (reviewed in refs
been reported to originate from fetal liver at the late stages 0225-227) have suggested that increased formation of 16
pregnancy, and high levels of this metabolite are found irhydroxyestrogen metabolites may be associated with an
the serum of infants shortly after birth (215). Although theincreased risk for developing mammary cancer in mice and
physiological role of estetrol is unknown, some studies sughumans based on the following observations. (i) By using
gested that the amount of estetrol excreted in the urine by thid6a-3H]estradiol and measuriniH release into body water,
expectant mother can be used as an indicator of fetal welthese investigators reported that whole-body a-16
being (211,213,214,216,217). hydroxylation of estradiol was ~50% greater in post-meno-
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Fig. 3. Formation of stable adducts of déhydroxyestrone with amino-containing macromolecules. The reversible reaction betweéydéxyestrone and
the amino group results in the formation of a Schiff base, which will further form a stable 16-ktariifio estrogen adduct via a Heyns rearrangement.

pausal patients with breast cancer than in healthy contradhould be noted that a substantial amount of non-enzymatic
subjects and enhanced d-®ydroxylation was also detected release of tritium from [ZH]estradiol has been noted earlier
in healthy women at high risk for breast cancer (from cancerin the tritum release assay for estradiol 2-hydroxylation
prone families) (228,229). (i) Estrogen d#ydroxylation (55,56,59). A recent study has suggested that there indeed
was higher in terminal duct lobular units in cancerous or nonexists substantial differences in the absolute rateliwdr
cancerous tissues from women with breast cancer comparedicrosomal 2-hydroxylation of estradiol when measured by
with breast tissue (reduction mammoplasties) from womerthe tritium release assay vs. a gas chromatography/mass
without cancer (74). Treatment of cultured human mammangpectrometry (GC/MS)-based product isolation assay (242). In
tissue with 7,12-dimethylbenafanthracene (DMBA) coordin- addition, if enolization at the C-16 and C-17 positions is a
ately increased the ras protooncogene expression and estradigcessary step for estrogenatBydroxylation as suggested
16a-hydroxylation in terminal duct lobular units (230). (iii) earlier (243), this may also make tritium at the C-16 position
16a-Hydroxyestrone increased unscheduled DNA synthesitabile.
and anchorage-independent growth of mouse mammary epithe- In contrast to the conclusions of Bradlow and his colleagues,
lial cells in culture, which suggests possible genotoxicity fora study by Lemonet al. suggested that increased urinary
this estrogen metabolite (231). In additionpdBydroxyestrone excretion of catechol estrogens but notail®ydroxylated
(but not 2-hydroxyestrone) enhanced the carcinogen-initiatedstrogens is correlated with an increased risk for non-familial
growth stimulation of cultured mouse mammary epithelialbreast cancer (244). More recent studies by Aldercreutz and
cells (231,232). (iv) Animal studies showed that in severalhis colleagues showed that a Finnish population (with high
different strains of mice with varying incidence of spontaneougisk for developing breast cancer) had an increased urinary
mammary tumors, the extent of déydroxylation of estradiol excretion of catechol estrogens relative taxd8/droxylated
was positively correlated with their mammary tumor incidenceestrogens when compared with an Oriental population at a
(233). (v) Treatment of C3H/OuJ mice with indole-3-carbinol, lower risk (245,246). These investigators suggested that the
a compound derived from vegetables of the Brassica familynain risk factor for the Finnish women may be related to high
(such as broccoli and brussel sprouts) and a precursor @strogen levels and greater estrogen production than occurred
a potent Ah-receptor ligand, indolo[3,2-b]carbazole (192),in the Oriental women.
increased the hepatic 2-hydroxylation but not thea-16 Finally, several additional questions concerning the possible
hydroxylation of estradiol (234—236). This treatment of miceetiological role of 1&-hydroxylated estrogens in hormonal
or rats with indole-3-carbinol was associated with a decreasecancer still need to be addressed: (ipi®ydroxyestrone and
incidence of spontaneous mammary or endometrial cancdra-hydroxyestradiol (estriol) are only very weak carcinogens
(237,238). (vi) Certain pesticides and polychlorinatedin the estrogen-induced hamster kidney tumor model under
biphenyls, which have been postulated to increase the risk afxperimental conditions that produced a 100% tumor incidence
human breast cancer (239,240), were reported to increase tire animals treated with estradiol or 4-hydroxyestradiol
rate of 1@&-hydroxylation of estrone and decrease the rate 0{88,89,180). The question of whether the lack of substantial
2-hydroxylation of estrone (241) in MCF-7 cells, a humancarcinogenicity for 16-hydroxyestrone and b6hydroxy-
breast cancer cell line. estradiol (estriol) observed in this tumor model also occurs in
Although the data described above suggest that increasedher animal tumor models or humans is not known. (ii)
formation of 1@-hydroxylated estrogen metabolites (relative Although pregnant women produce very large amounts of
to the formation of 2-hydroxylated estrogen metabolites) mayl 6a-hydroxyestradiol (estriol) and &6hydroxyestrone during
be associated with an elevated risk of breast cancer, it shoulibrmal pregnancy (247,248), full term pregnancy does not
be noted that these studies have not yet received sufficieimicrease their breast cancer risk, but actually decreases their
confirmation by other investigators using different experimentatisk of breast cancer (249-251). (iii) Althoughd-®&iydroxyes-
settings. One concern is the questionable validity of 3e trone is capable of interacting covalently with amino groups
release assay used in the above studies which determines tineproteins (as depicted in Figure 3), there is not sufficient
release of tritium from 2H- or 160-3H-labeled estrogens to evidence to indicatén vivo genotoxicity or strong carcino-
measure 2- and b6hydroxylationin vivo and, in particular, genicity for the 16-hydroxylated estrogens. In view of these
to measure the very low levels of estrogen 2- andi-16 concerns, we conclude that the evidence is not sufficiently
hydroxylase activity in uninduced mammary explants or cellsstrong to support the hypothesis of an etiological role af-16
invitro (usually <1 pmol/mg microsomal protein/min). It hydroxylated estrogens in cancer development.
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In summary, we have described the 2-, 4a-,66[3-, 70-, action of the steroids. Pretreatment of rats with phenobarbital
150- and 1@-hydroxylation of estradiol or estrone by or several other enzyme inducers decreased (i) the uterotropic
cytochrome P450 enzymes present in liver and, in particulaeffects of estradiol, estrone and certain oral contraceptive
in estrogen target tissues or cells. Many other hydroxylatedteroids (268-271), (ii) the anesthetic effects of progesterone
metabolites of estradiol and estrone (not discussed here, bahd deoxycorticosterone (272,273), and (iii) the growth-pro-
summarized in Table I) have been identified duringitro moting effects of testosterone on the seminal vesicles
incubation of an estrogen with enzyme preparations fron{274,275). In contrast to these results, inhibition of hepatic
animals or humans and/or have been identified in urine, blood;ytochrome P450 enzymes by treatment of rats with carbon
or tissue samples obtained durimgvivo studies. It is not tetrachloride enhanced the action of estradiol on the uterus
known whether these metabolites are formed in extrahepati276).
target cells and very little is known about their physiological Additional studies from our laboratory showed that treatment
activities. This is an area in need of more research. of adult female rats with phenobarbital stimulated the liver

As indicated above, many different isoforms of cytochromemicrosomal metabolism of estradiol to 2-, 4e-66f3- and 14x-
P450 are expressed in estrogen target tissues (e.g. breasydroxyestradiol whereas treatment with 3-methylcholanthrene
uterus and brain), but the role of these cytochrome P458timulated the &-, 7a- and 1%-hydroxylation of estradiol
enzymes for the metabolism and action of estrogens in estrog€fl11). Treatment of female rats with dexamethasone stimulated
target organs has not received adequate attention. We beliettee hepatic microsomal enzyme activities for the 2-, 4,6
that metabolic conversion of estradiol or estrone to multiple7a- and 141-hydroxylation of estradiol and the formation of
hydroxylated metabolites by cytochrome P450 enzymes irseveral nonpolar unidentified metabolites of estradiol (111).
target organs is not only for the inactivation of the hormone Altogether, at least a dozen estradiol metabolites were formed
but may also diversify the action of estrogens and provide &y liver microsomes from female rats treated with different
mechanism that enables estradiol and estrone to exert unigireducing agents (111).
effects in atissue/cell-specific manner. It will be of considerable Studies in humans showed that cigarette smoking (exposure
interest to examine each of the hydroxylated estrogen metabdie polycyclic aromatic hydrocarbons and other inducers) or
ites listed in Table | for their estrogenic activity (mediated bytreatment of people with phenobarbital and other anticonvulsant
the classical estrogen receptor), as well as for other potentiallgrugs stimulated the metabolism of xenobiotics and steroid
unique biological effects. A recent study showed that 17-hormones (reviewed in refs 110 and 260). Female smokers
epiestriol (a quantitatively minor metabolite of estradiol) is ahave enhanced 2-hydroxylation of estradiol (277,278), and
potent stimulator of the promoter of the human T@¥Fgene lower serum and urinary levels of estradiol and estrone (279—
transfected into cultured cells whereas estradiol displayed littl281) which helps explain why these individuals have a higher
or no effect (252). risk for osteoporosis (282—-284) and a lower risk for endometrial

It is noteworthy that several recent studies have suggestezhncer (282,284,285). Women taking phenobarbital and other
a role for estrogens in the prevention of Alzhiemer’s diseas@anticonvulsants have an increased risk of osteoporosis which
in humans (253-256) possibly by enhancing the plasticity anevas thought to result from enhanced metabolic inactivation of
interactions of brain neurons (257). Multiple cytochromes25-hydroxyvitamin @3 (286—288), but enhanced metabolism
P450 are present in the brain (96-103), and recent studiex estrogen to inactive metabolites may also play a role in the
have shown that alcohol and other inducing agents stimulaticreased risk of osteoporosis seen in women treated with
the expression of certain cytochromes P450 in the braimnticonvulsants. More research is needed to evaluate this
(100). These effects of environmental chemicals may modulatpossibility. It will also be of interest to determine whether
estrogen metabolism and action in the central nervous systemiomen taking phenobarbital and other anticonvulsant drugs
It will be of interest to determine whether the reportedthat enhance estrogen metabolism have a decreased risk of
beneficial effects of estrogen in the central nervous systerbreast or endometrial cancer.
depend on or are modulated by the metabolism of the hormone Studies by Bradlow and his colleagues showed that chronic
by specific isoforms of cytochrome P450 in the brain. administration of indole-3-carbinol stimulates the 2-
hydroxylation of estradiol (234—237) and inhibits mammary
preneoplasia and spontaneous mammary tumors in female
C3H/OuJ mice (234,237). An inhibitory effect of indole-3-
carbinol on the formation of spontaneous endometrial cancer
In earlier studies, we pointed out that steroid hormones areas also observed in rats (238). In addition, Bradlow and his
metabolized by the same monooxygenases (cytochrome P480lleagues reported a stimulatory effect of indole-3-carbinol
enzymes) that metabolize drugs and other xenobioticen the 2-hydroxylation of estradiol in humans (289,290)
(258,259). Accordingly, factors that influence the metabolismand suggested that indole-3-carbinol may be an effective
of xenobiotics also influence the metabolism of steroid horchemopreventive agent for breast cancer in women (226,229).
mones (258,259). Cytochrome P450-dependent xenobiotiddowever, the use of indole-3-carbinol and other Ah receptor
and steroid-metabolizing enzymes in liver are regulated byagonists as chemopreventive agents against estrogen-dependent
genetic and environmental factors (108-110, 260-267). Ifmmuman cancers through induction of estrogen 2-hydroxylation
studies started over 30 years ago, we found that treatment of ragBould receive more careful evaluation because: (i) Some
with phenobarbital or other drugs or with certain halogenatedtudies suggest that total catechol estrogen production is
hydrocarbon insecticides increased liver microsomal monopositively associated with an increased risk of breast cancer
oxygenase activity for the metabolism of estradiol, estronein women (244—246). (ii) Indole-3-carbinol, which is converted
progesterone, and testosterone (reviewed in refs 109,110,26@). a potent Ah-receptor agonist, indolo[3,2-b]carbazole, in the
The stimulatory effect of liver microsomal enzyme inducersacidic stomach (192), and other Ah-receptor agonists (such as
on steroid metabolism was paralleledvivo by a decreased TCDD) have been reported to increase the rates of estrogen
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4- and 2-hydroxylation in liver and estrogen target cellsin different target tissues/cells may differ depending on the
(70,75,86,235). For instance, treatment of rats with indole-3relative amounts of the different metabolites formed.
carbinol resulted in increased rates of hepatic 4- and 2- Itis of considerable interest that although prolonged adminis-
hydroxylation of estradiol by 4- and 2-fold, respectively (235), tration of TCDD to female rats enhanced the incidence of liver
and treatment of cultured MCF-7 breast cancer cells withumors, this treatment inhibited the formation of spontaneous
indolo-3-carbazole or TCDD increased the rates of 4- andumors in the uterus, mammary gland, and pituitary (297),
2-hydroxylation of estradiol by>10-fold (70,75,86). The which are all target tissues for estrogen action. Whether the
stimulatory effect of indole-3-carbinol on estradiol 4- inhibitory effect of TCDD on spontaneous tumor formation in
hydroxylation has not been carefully considered in mammargstrogen target tissues is attributable to its strong stimulatory
cancer chemoprevention studies in animal models and humaedfect on estrogen metabolitactivationin these target tissues
(226,289,290). A chemopreventive strategy for human breass worthy of further investigation. Careful dose-response
cancer by employing Ah receptor agonists that also enhancgtudies with TCDD are needed to determine whether the
the 4-hydroxylation of estrogens to potential carcinogendeneficial or toxic effects predominate at low dose levels
should receive more attention prior to extensive clinical trials,of TCDD.
although indole-3-carbinol treatment may turn out to be an
eff_ective modf_;\Iity_forir_lhibition of estrogen-related CarCinogen'Enzyme-catalyzed interconversion between estrone and
esis and studies in this area should be encouraged. estradiol

Recent studies from our laboratory indicated that chronic
administration of sodium phenobarbital (0.05% in the drinkingl17p-Hydroxysteroid dehydrogenase (3HSD) is a group of
water) for 16 months very strongly inhibited the formation of intracellular isozymes catalyzing interconversions between
spontaneous mammary tumors in female C3H/OuJ mice. Thisstradiol and estrone (298). These enzymes are widely distrib-
effect was accompanied by a several-fold increase in the livanted in human tissues, not only in classical steroidogenic
microsomal 2-hydroxylation of estradiol with little or no tissues, such as placenta (299-301) and ovary (302), but also
change in estradiol 4- and déhydroxylation (B.T.Zhu and in a large number of peripheral intracrine tissues (303),
A.H.Conney, unpublished data). It was observed in this studyincluding adipose tissue (304), skin and vaginal mucosa (305),
however, that sodium phenobarbital administration increasedndometrium (306), breast and cultured mammary cancer cells
the formation of liver tumors. It will be of interest to do (307-313), red blood cells (314), and liver (315). Interconver-
additional dose-response studies to determine whether lowsion between estradiol and the less active hormone, estrone,
doses of sodium phenobarbital will inhibit mammary carcino-by 173-HSD in target cells has long been recognized as an
genesis without enhancing liver tumor formation. Itis importantimportant regulatory mechanism for modulation of estrogen
to note that epidemiology studies have not found an enhanceattion in these cells (84,298).
risk of liver cancer in people treated with phenobarbital and Although 1B-HSD activity has been detected in several
other anticonvulsants. target tissues, many early studies focused on the functional

Increased hepatic estradiol metabolism should result imole of this enzyme in the uterine endometrium.34SD
decreased circulating levels of estradiol as well as decreasexttivity is localized in the secretory glandular epithelium and
hormonal activity (269,291), but selective modulation of proliferative endometrium of the uterus (316), and this enzyme
estrogen metabolism in target tissues or cells should not bactivity is increased-10-fold in the uterus during the secretory
expected to affect the blood and urinary levels of estrogenphase of the menstrual cycle compared to that during the
and their metabolites because of the very low activity ofproliferative phase (317). In humans as well as in all other
estrogen-metabolizing enzymes in target tissues relative to thmammalian species examined, this increase of uterire 17
liver. Previous studies showed that treatment of animals wittHSD during the secretory phase is mediated by increased
TCDD (an environmental chemical with potent monooxygen-concentrations of progesterone (310,317,318). Previous studies
ase inducing activity) resulted in a marked antiestrogenic effecshowed that uterine BFHSD predominantly catalyzes the
(292—-294), but the blood level of estradiol was not significantlyconversion of estradiol to estrone using NAD (and to a lesser
influenced (294). Additional studies revealed a marked stimulaextent, NADP) as a cofactor, resulting in significant loss of
tory effect of TCDD on the 2-, 4-,@ and 1®-hydroxylation  estrogenic hormonal stimulation in the uterus (298,315). It is
of estradiol in cultured human MCF-7 breast cancer cellsoteworthy that progesterone is included in many estrogen
(70). The stimulatory effect of TCDD on oxidative estradiol preparations (e.g. post-menopausal estrogen supplements and
metabolism in cultured MCF-7 cells was associated with arbirth control pills) since it reduces the risk of uterine endomet-
inhibitory effect on estradiol-induced formation of transformedrial cancer in women taking estrogens (18). A major mechanism
foci and plasminogen activator activity (295,296). Other studiesor the beneficial effects of progesterone in preventing uterine
indicated that administration of TCDD to mice injected with endometrial carcinoma may be attributed to its induction
MCF-7 human breast cancer cells inhibited the growth of thesef uterine 1PB-HSD, as well as estrogen sulfotransferase
explants (296), presumably by enhancing estrogen metabolis(315,317-319).
in the breast cancer cell explant and/or in host tissues. Theselt is of considerable interest that B-HSD in breast tumors
results indicate that Ah receptor agonists such as TCDD capredominantly catalyzes the reductive conversion of estrone
exert multiple effects on estrogen action in target cells due too estradiol (308,320), suggesting that breast tumors have
altered estrogen metabolism. These effects include decreasditferentisozymes of 13-HSD than the uterus which catalyzes
estrogenic hormonal stimulation due to lower levels of estrathe oxidative metabolism of estradiol to estrone (298). More-
diol, increased exposure to 2-hydroxyestradiol or 2-methoxyesaver, the reductive activity of B#HSD is increased in mam-
tradiol (potentially protective metabolites), and an increasednary tumors compared with normal breast that does not contain
exposure to 4-hydroxyestradiol (a genotoxic/carcinogenic metmalignant cells (307,309). This finding suggests that breast
abolite of estradiol) (70). Theet biological effect of TCDD tumors may provide themselves with a favorable estrogenic
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environment for growth through increasing the metabolicmore strongly expressed in adipose stromal cells surrounding
conversion of estrone to estradiol. TheBIMSD reductive mammary carcinoma cells than in stromal cells distal to the
activity appears to be under multifactorial control. Severaltumor (344,345), suggesting enzymatic aromatization as an
growth factors and cytokines (ILEland IL-6) are among the important source of estrogen for mammary tumors. Several
multiple factors capable of stimulating the expression of thisnhibitors of aromatase have been developed and used in
enzyme activity in human breast cancer cells (311,313,321patients with estrogen-dependent tumors with varying degrees
323). of success (351-353).

At least five different isozymes of humanFHSD (types Recent studies have characterized the human aromatase
I-V) have been isolated and sequenced (320,323-327). Theyene, which consists of 10 exons and spans at least 75 kb
have different substrate and cofactor specificities, tissue distri354—358). The aromatase gene contains multiple copies of
butions, subcellular localizations and catalyze opposite rea@xon 1, and each copy of exon 1 contains its own promoter
tionsin vivo. The diversity of the multiple 13-HSD isozymes for transcriptional activation (356—359). Tissue-specific expres-
suggests that they have different physiological functions irsion is regulated by alternative use of these multiple promoters
different target cells (328). For instance, reductive activity in(356-360). The expression of aromatase in breast and abdom-
human mammary cells is largely associated with the Type Inal adipose tissue is regulated by a promoter that flanks exon
17B-HSD that uses NADPH as a cofactor (320), whereas theb whereas exon 1c (with its own separate promoter) is specific
oxidative activity in uterus is associated with Type IIt7 for the expression of aromatase in the ovary (356-359).
HSD that mainly uses NAD as a cofactor (298,320). It shouldviolecular and epidemiological analyses of tissue-specific util-
be emphasized that selective regulation of the oxidative andzation of multiple exons 1 and their corresponding promoters
or reductive 1B-HSD activity in estrogen target tissues by revealed a switching from the use of adipose-specific exon 1b
chemical intervention or dietary modulation may lead to newto exon 1c in adipose tissue adjacent to carcinomas in most
approaches for the prevention of estrogen-dependent uteriigeast cancer patients, whereas aromatase mRNA in adipose
and mammary cancers in humans. tissue distal to the tumor of the same patient was normally

Finally, it is noteworthy that certain isoforms of cytochrome transcribed from exon 1b as occurred in the breasts of healthy
P450 can also catalyze the NADPH-dependent oxidation ofontrols (356-359). A switching from exon 1b to exon 1c was
estradiol to estrone (117). Hence, factors that influence theore often observed in breast cancer patients with metastasis
levels of cytochrome P450 enzymes may modulate the actiothan in those without metastasis (361). It is speculated that
of estra_diol both by altering its ring hydroxylation and its the switching from the adipose-specific exon 1b to exon 1c
conversion to estrone. may modify the strictly-regulated tissue-specific expression of

aromatase thereby leading to over-expression of aromatase in

Estrogen formation by aromatization of androgens or adipose stromal cells adjacent to the tumor.
hydrolysis of estrogen conjugates A variety of factors have been shown to regulate the activity

o and expression of aromatase in cultured adipose stromal cells.
Aromatization of androgens Examples of these regulatory substances include glucocortico-
Aromatase (estrogen synthetase; cytochrome P450 19) cati)s, cAMP analogs, phorbol esters and a variety of growth
lyzes the aromatization of androgens to estrogens and fctors such as epidermal growth factor, fibroblast growth
the rate-limiting enzyme in the biosynthesis of endogenousactor, platelet-derived growth factor, transforming growth
estrogens (329,330). In addition to endocrine tissues such agctorsa and, and tumor necrosis factor (360). It will be of
ovary and placenta (329,331,332), aromatase activity is founghterest to identify factors that govern the switching from the
in several non-endocrine tissues such as brain (333—-335)se of adipose-specific exon 1b to the use of ovary-specific
adipose tissue (336,337), liver (338), fibroblasts (339,340) angxon 1c in transcriptional activation of aromatase synthesis in

mammary glandular cells (341-343). In adipose tissue, muchdipose stromal cells near mammary tumors.
higher enzyme activity and mRNA levels for aromatase ar

present in stromal cells than in other cell types (344,345). %ormanon and hydrolysis of estrogen sulfates and glucuronides
The extent of conversion of plasma 4-androstene-3,17-dioné has been well documented that metabolic conjugation of
to estrone is positively correlated with increased obesity angstradiol and estrone to glucuronides and sulfates by conjugat-
increased age, suggesting adipose tissue as a significant sifig enzymes in liver and target cells decreases their hormonal
of estrogen biosynthesis and as a major source of estrogen agtivity by facilitating their excretion (25,35,36,39). However,
post-menopausal women and in elderly men (346). Unlikgt has also been known for years that dehydroepiandrosterone
estrogen synthesis in the ovary, estrogen production in adipo¢®HEA)-sulfate, a sulfonated steroid with a very slow meta-
tissue is not cyclic, but continuous. Although the physiologicalbolic clearance rate{1% of DHEA,; ref. 362), is an important
role of extragonadal estrogen production by the aromatasigtermediate precursor for the biosynthesis of several steroidal
pathway is not fully understood, several investigators (347-hormones in many different types of cells. The concept that
349) have discussed the possible relationship between estrogednjugated estrogens (formed mainly in liver) may also be
biosynthesis in adipose tissue and several disease states, surgiportant precursors for metabolic formation of hormonally
as endometrial and breast cancer, as well as osteoporosis aaclive estrogens in target cells has received ever-increasing
chronic amenorrhea in obese women and gynecomastia @itention and support (363-370).
obese men. In post-menopausal women, the plasma level of estradiol is
It is of interest that immunohistochemical staining of humanvery low, but its concentration in uterine endometrium and
breast tumors for aromatase indicated the presence of aromatdseast cancer tissues can be 10- to 50-fold higher than the
in focal areas of stromal spindle cells but only very low levelscirculating estradiol concentration (371,372). The concentra-
were present in tumor epithelial cells, inflammatory cells andions of estradiol in the uterine endometrium and breast cancer
normal breast cells (350). Moreover, the aromatase activity iissue obtained from post-menopausal women are similar to

11



B.T.Zhu andA.H.Conney

those observed in premenopausal women (365,369,371,372xtrahepatic target cells (117,385,386). The hydroxylation of
It is believed that estrogen biosynthesis in extragonadal tissuednjugated estradiol and estrone in the liver and/or in target
and, in particular, in estrogen target organs may contributeells and further deconjugation (enzymatic hydrolysis) of these
significantly to the unexpectedly high tissue levels of unmetabmetabolites may be an additional source of hydroxylated
olized estrogens in post-menopausal women. Since estrone-8strogen metabolites in target tissues or cells.
sulfate is a major circulating estrogen metabolite with an More research is needed to understand the factors that
overall low clearance rate and a long half-life in humans (~9 hyegulate the expression of estrogen-specific sulfotransferase,
(373,374), estrone-3-sulfate is thought to be an importantUDP-glucuronosyltransferase, sulfatase dhdlucuronidase
precursor of active estrogen peripherally in post-menopausah estrogen target tissues, as well as to identify genetic and
women (37,367,370,375). environmental factors that modulate these enzyme activities.
Sulfonated estrogens themselves have almost no estrogdihe formation of estradiol, estrone and their hydroxylated
receptor binding affinity and their estrogenic activity resultsmetabolites by metabolic hydrolysis of estrogen sulfates and
from the release of unconjugated estrogens by enzymatiglucuronides is a potential target for chemotherapy or chemo-
deconjugation in liver as well as in target tissues or cells (e.gprevention of estrogen-associated tumors (e.g. breast and
uterine endometrial cells and breast cells) (25, 363—-369,376)terine cancers). Developing potent and selective inhibitors of
A recent study in rodents from our laboratory showed thatstrogen sulfatase(s) is already an actively-pursued strategy
estrone-3-sulfatase in the uterus (a classical target organ féor chemoprevention against mammary tumorigenesis (387—
estrogen action) may play a more important role than hepati889). We believe that developing pot@aglucuronidase inhib-
sulfatase in mediating the hormonal action of estrone-3-sulfatéors with low toxicity and high bioavailability in humans will
in this target organ (377). Since estrone-3-sulfate is transportealso be of great potential value for the prevention and treatment
into human breast cancer cells (378) which contain high levelsf estrogen-associated cancers.
of estrogen sulfatase activity (25,367,368,378), enzymatic
hydrolysis of estrone-3-sulfate (together with estrogen synFormation and catabolism of methoxyestrogens and
thesis by aromatase in breast tumors) is likely an importanéstrogen fatty acid esters
source of parent estrogens in breast cancer cells and the&e

pathways of estrogen synthesis are believed to contribute ve eemLaetEg;l(t:hehr%drfnog(ryela\‘/t/lgtne " 22% (t))lre gzgjugﬁ;?ensgr;eetsig%g%?é n
significantly to the higher concentration of estradiol in breas ' ’

tumor tissues than in the systemic circulation (37,369,370,372 _Sa;:lgeglg/icre;:liic\:/ ?ts Oﬁoﬁercglretilzz ergrgtl%a}tnizt;hltzltrioﬁlazflcal
Several studies have indicated that estrogen formation i genic Vity. S y Yl
%stenflcanon with fatty acids leads to the formation of much

human breast tumors in post-menopausal women througwore lipophilic estrogen metabolites. These metabolites have
desulfonation of estrone-3-sulfate may be more important tha ery long half-lives (390,391) and do not bind to the classical

the aromatase pathway of estrogen formation by the brea$ .
(367,370,375,37%). It é notewo?thy that a prev);ous Stud>;9strogen receptor (392). Recent studies suggest that at least

showed that treatment of rats with estrone-3-sulfate signific%prlne of tlhestg I.'tpOph'l'(; estrog'e? rgetimlrl]tes Imay hallvetumque
antly stimulated the growth &#-methylN-nitrosourea-induced o oJical ac rI1VI 1es (nk;) ?ssr(])ma ed wi d € g_alssu_:a I?S rogen
mammary tumors (379), which is in support of the conceptrecfptolr) or they can be further converted to biologically active
that estrogen sulfates can be effective precursors of estrogerﬁ?:o ecules at or near estrogen receptors.
hormones required for mammary tumor grovithvivo. Methoxyestrogens

High levels of estroger-glucuronidase, which converts The O-methylation of catechol estrogens is catalyzed by
estradiol and estrone glucuronides to their corresponding parenatecholO-methyltransferase (COMT), an enzyme that also
hormones, are expressed in hamster kidney (a target organ foatalyzes th®-methylation of physiologically important cate-
carcinogenesis), and this enzyme activity is stimulated in theholamines and many other catechols (49,393—-395). Catechol-
kidney following chronic administration of estradiol (380). O-methyltransferase activity is present in large amounts in
The high estrogef-glucuronidase activity in hamster kidney liver and kidney, and it also exists in significant amounts in
(approximately twice the activity in liver) and the increase ofred blood cells, uterine endometrium, the mammary gland and
this enzyme activity during chronic estrogen treatment maymany other tissues (396—399). In all tissues examined thus far,
provide additional amounts of parent estradiol and estrone asatecholO-methyltransferase activity is found almost exclus-
well as reactive estrogen metabolites to this target organ aniglely in the cytosol, but some activity is also found in a
thus may facilitate the development of estradiol-induced kidneynembrane-bound form (394,400). Because of the rapid enzym-
tumors (380). atic O-methylation of catechol estrogens, 2-methoxyestrone

It is of considerable interest that a large amountPef was previously shown to be one of the most abundant estrogen
glucuronidase was found in mammary glandular tissue ofetabolites in human plasma and urine (30,401,402). In
female Sprague—Dawley rats at puberty (381), and treatmemregnant women, the mean plasma concentration of unconju-
of these animals with dietary-glucaro-1,4-lactone (a potent gated 2-methoxyestrone is ~4000 pg/ml (403). Interestingly,
natural inhibitor of B-glucuronidase) strongly inhibited the 2-methoxyestrone and 2-methoxyestradiol have higher binding
growth of mammary glandular celia vivo (381). Additional  affinities for sex hormone-binding globulin than estradiol and
studies also showed that treatment of female Sprague—Dawlé@¢hydroxyestradiol (404), and the high binding affinities of
rats with B-glucuronidase inhibitors suppressed mammarythese two methoxyestrogens may contribute to their high
tumor promotion (an estrogen-dependent process) after initplasma levels.
ation with chemical carcinogens (382—-384). The monomethylated estrogen metabolites (structures shown

It should be noted that estrogen sulfates or glucuronides Figure 4) have little or no estrogen receptor binding affinities
can also be hydroxylated at multiple positions by NADPH-(<1%) when compared to estradiol (30,405), and they lack
dependent cytochrome P450 enzymes in liver as well as iestrogenic effects on the uterus [e.g. lack of effect on uterine
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Fig. 4. Structures of monomethylated catechol estradiol metabolites. Estradiol is hydroxylated to form catechol estradiol metabolites (2- and
4-hydroxyestradiol). They can be furth@rmethylated by catechd)-methyltransferase (COMT) to form monomethoxy estradiol metabolites.

2-Methoxyestradiol and 4-methoxyestradiol are the major monomethylated isomers formed from their respective catechol precursors. Although the structures
for estrone and its catechol metabolites are not shown, the same metabolic pathways as shown also occur for estrone or its metabolites (a 17-keto group in
place of the 1B-hydroxy group of estradiol). Since catect@methyltransferase catalyzes the metabolism of a wide spectrum of endogenous and exogenous
catechols, th@®-methylation of catechol estradiol or estrone metabolites is thus subjected to regulation by these catechols (hydroxylated flavonoids,
catecholamines, etc.Abbreviations used2-OH-E,, 2-hydroxyestradiol; 4-OH-E 4-hydroxyestradiol; 2-MeO-E 2-methoxyestradiol;

2-OH-3-MeO-E, 2-hydroxy-3-methoxyestradiol; 4-MeO,E4-methoxyestradiol; 4-OH-3-MeO,E4-hydroxy-3-methoxyestradiol.

wt (221) or peroxidase activity (406)]. Previous studies on theadministration of 2-methoxyestradiol also inhibited the growth
chemical reactivity and potential genotoxicity of catecholof a human breast carcinoma cell line (estrogen receptor
estrogens (159-165,178) have led to the suggestion thakegative) in immunodeficient mice (95). It is noteworthy that
enzymaticO-methylation was primarily a detoxification path- 2-methoxyestradiol is among the most potent endogenous
way for these catechol intermediates. However, there armhibitors of angiogenesis known, and its antiangiogenic effect
several studies indicating that 2-methoxyestradiol exerts uniquas testedn vitro is highly specific and is not shared by several
biological effects that are not associated with estradiol, 2¢losely related structural analogs (93). The effects of 2-
hydroxyestradiol or other methoxy derivatives of estradiolmethoxyestradiol to disrupt microtubule function, to inhibit
(90-94,407-411). For instance, treatment of rats with 2angiogenesis and to inhibit the proliferation of breast cancer
methoxyestradiol decreases cholesterol and triglyceride levetllsin vitro andin vivo suggest that factors enhancing the 2-
in the blood and this effect is not associated with activatiorhydroxylation of estradiol and the subsequent formation of 2-
of the classical estrogen receptor (407—-409). In addition, 2methoxyestradiol may inhibit estrogen-induced breast cancer.
methoxyestradiol inhibits the growth of certain human breastt is possible that the stimulatory effect of indole-3-carbinol
cancer cell linesinvitro and invivo, and it is a potential and phenobarbital on the 2-hydroxylation of estradiol and the
inhibitor of estrogen-dependent carcinogenesis. These studissbsequent formation of an increased amount of 2-methoxyes-
are discussed below. tradiol can explain the inhibitory effects of indole-3-carbinol
2-Methoxyestradiol inhibits the proliferation of several can-and phenobarbital on spontaneous breast carcinogenesis in
cer cell linesin vitro (90,91,93,95,412), and human breastC3H/OuJ mice.
cancer cell lines (estrogen receptor positive or negative) were Recent studies have shown that chronic administration of
particularly sensitive to a cytotoxic effect of 2-methoxyestra-quercetin (a substrate and inhibitor of catec@atnethyltrans-
diol (412). Additional studies indicated that 2-methoxyestradiolferase) to male Syrian hamsters significantly increased the
disrupted microtubule function (92,94) and was a potenseverity of estradiol-induced kidney tumors (413), which was
inhibitor of angiogenesis (93,95). Administration of 2- correlated with inhibition of enzymati®®-methylation of
methoxyestradiol inhibited the growth of transplanted meth-Acatechol estrogens during quercetin administration (414). It is
sarcoma and B16 melanoma in C3H mice (93), and orabf considerable interest that male Syrian hamster kidney,
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CD-1 mouse uterus and rat pituitary (tissues that develogstrogen fatty acid esters by enzymes present in liver as well
estradiol-induced tumors) have very high levels of endogenouas in estrogen target organs such as the uterus, breast and
catecholamines (up to 50-fold higher than in several non-targgilacenta (427-432). In MCF-7 human breast cancer cells,
tissues in the same animals or in other strains or specie®nzyme activity for the formation of estrogen fatty acid esters
(185). High concentrations of catecholamines in target tissueis highest in the microsomal fraction, but some enzyme activity
may inhibit catechoP-methyltransferase-catalyz€dmethyl- s also present in the nuclear and mitochondrial fractions (431).
ation of catechol estrogens (185), which will result in decrease®oth saturated and unsaturated fatty acid acyl-co-enzyme A
formation of 2-methoxyestradiol and increased tissue concerderivatives can serve as donors for the esterification of estradiol.
trations of 2- and 4-hydroxylated estrogens. This effect mayt should be noted that although most previous studies have
enhance tumor formation in these target tissues. Earlier studiemly studied fatty acid ester formation with estradiol as
in animals showed that stressed mice had an increased incidermgbstrate, esterification of dénydroxyestradiol (estriol) has
of spontaneous breast cancer (415). Interestingly, epidemiologidso been shown to occur at theokBydroxy group (432,434).
ical studies have also suggested that sustained stress (associatefistradiol fatty acid esters themselves have little or no
with an increase in endogenous catecholamine levels) is a riskstrogen receptor binding affinity (392), and their hormonal
factor for human breast cancer (416-419), which is consister#ctivity results from the slow release of the parent estrogen
with decreased formation of 2-methoxyestradiol together witthy metabolic cleavage of the fatty acid esters by esterases
the possible accumulation of 4-hydroxylated catechol estrogen@30-435). Because of the high lipophilicity of the fatty acid
in mammary tissue. esters of estradiol, these endogenous metabolites are present
Since human and rodent breast cancers express catechnl very low concentrations in the blood (436-438), but at
estrogen-forming enzyme activity (81,122,127,420,421) andelatively high concentrations in fatty tissues (432,438). These
elevated levels of catech@-methyltransferase (393-395), it esters have long half-lives and are extremely potent mammalian
is likely that significant amounts of 2-methoxyestradiol areestrogens because they serve as a reservoir and direct precursor
formed in breast cancer cells. Recent studies showed th#br estradiol formation (390,391,432,439). Because the mam-
there are marked person-to-person variations in catedhol- mary gland contains large amounts of fat which can serve as
methyltransferase activity in red blood cells (422-424) andh storage site for fatty acid esters of estradiol and possibly
liver samples (425), and the distribution of catec@efnethyl-  also for fatty acid esters of hydroxylated estrogen metabolites,
transferase activity in the American population appears tave suggest that estrogen-fatty acid esters may be particularly
follow a polymorphic bimodal pattern (423,425,426). It will important estrogens for the breast (‘mammary selective
be of great interest to compare the risk of breast cancer iastrogen metabolites’).
people with high or low catechd@-methyltransferase activity. |t will be of considerable interest to advance our knowledge
It is expected that individuals with significantly lower COMT on the formation, storage and, in particular, subsequent hydro-
activity may have a higher risk of estrogen-associated breagjsis of estrogen-fatty acid esters by enzymes selectively
cancer due to decreased formation of antitumorigenic Zexpressed in the mammary gland which may be an important
methoxyestradiol and retarded inactivation of catechol estrogepathway for supplying hormonally-active and/or potentially
intermediates (particularly 4-hydroxyestradiol which is hor-genotoxic estrogens for this target organ. It will also be of
monally active and potentially genotoxic). interest to study the factors (endogenous or exogenous) that
The mechanisms by which 2-methoxyestradiol exerts antiregulate the synthesis and cleavage of estrogen fatty acid esters
angiogenic activity, anti-tubulin activity, and antiproliferative since factors influencing the formation and hydrolysis of
effects on tumor cells lacking the classical estrogen receptasstrogen fatty acid esters in liver and in extrahepatic target
are not known. The high degree of selectivity of 2-methoxyescells may profoundly affect the intensity and duration of
tradiol’s antiangiogenic activity (many closely related analogsestrogen action in the body. Recent studies in our laboratory
have poor activity) suggests the possibility of a specific yeindicated that treatment of rats with clofibrate (a peroxisome-
unidentified receptor for this action of 2-methoxyestradiol. Itproliferator) stimulates by several-fold the liver microsomal
will be of great interest to determine the molecular mechanismgrmation of estradiol-fatty acid esters (440). The significance

of action of 2-methoxyestradiol, to determine whether endogerof this effect on estrogen’s hormonal action remains to be
ously formed 2-methoxyestradiol has antitumor efféetgivo,  gJycidated.

and to identify endogenous as well as exogenous factors that

regulate the formation and metabolic disposition of 2- . .
methoxyestradiol in target cells. Such studies will help ourEST0gen metabolites formed in target cells may have
understanding of the physiological roles of 2-methoxyestradiolUNidué functions not associated with classical estrogen

which is a nonpolar estradiol metabolite formed in substantiateceptors; a general hypothesis

amounts in many estrogen target cells. These studies may alg@tradiol activates the classical estrogen receptor to exert its
provide novel mechanism(s) and strategies for inhibiting thenajor effects and so do some estrogen metabolites that still
formation and growth of hormonal cancers. _ retain potent estrogenic activity (e.g. 4- or okBydroxy-
Finally, it should be noted that although 4-methoxyestradiokstradiol, and 4- or I6-hydroxyestrone). Although these four
showed little activity in test systems where 2'm‘ath‘”(yes_trad'Obstrogen metabolites as well as some other estrogen metabolites
is highly active, whether this methoxyestrogen metabolite hag e uterotropic activity in rodents, they are generally less
other unique biological functions other than serving as &otent than estradiol.
substrate for 4-hydroxyestradiol formation by demethylation gome estrogen metabolites elicit unique physiological
(380) is not known at present. responses with higher potency and activity than the parent
Estrogen fatty acid esters hormone estradiol, and some of these unique activities as well
In the presence of fatty acid acyl-co-enzyme A, estradiol (abs some activities of the parent estrogen cannot be blocked by
the C-17 position only) can be converted to very lipophilic estrogen receptor antagonists. These results suggest that certain
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effects of estradiol and its metabolites are not associated witteceptors’. It will be of considerable interest to determine
activation of the classical estrogen receptor. It is becomingvhether estrogen metabolites with unique functions are endo-
increasingly better recognized that certain estrogen metabolitggenous ligands for some of the orphan receptors. (vi) In
formed in target tissues or cells may serve as local modulatosddition to the candidate receptors mentioned above, other
or mediators of specific biochemical events taking place irunidentified receptors or specific intracellular effectors (such
these target cells. We have indicated earlier in this review thas transcriptional factors or enzymes) may also be targets for
(i) catechol estrogens may modulate the function of dopaminactive estrogen metabolites. Whatever the structural identity
and other catecholamines by inhibiting their enzymdlic  of intracellular receptors or effectors for active estrogen
methylation and by modulating their interaction with specific metabolites, we believe that the interaction of active estrogen
receptors; (ii) 4-hydroxyestradiol is carcinogenic and thismetabolites with these specific receptors or effectors in target
compound may damage cellular macromolecules such as DNA&glls may lead to the expression of new responses or alterations
proteins and lipids because of metabolic redox cycling toof on-going biochemical processes. This is an area in need of
generate reactive intermediates and free radicals; (iii) 2more research.
methoxyestradiol inhibits angiogenesis, the growth of cultured There are a few examples of biologically active metabolites
cancer cells and the growth of human mammary cancer cellsf certain hormones that have their own receptors. These
in immunodeficient mice; and (iv) 17-epiestriol stimulates theexamples may help our understanding of the hypothesis that
promoter of the human TGB3 gene transfected into cultured certain unique effects of the parent estrogen are mediated by
cells whereas estradiol has little or no effect (252). Studiesocally-formed metabolites that activate their own specific
with 17-epiestriol suggest that the interaction of this estradioteceptors or effectors in target cells. The pituitary takes
metabolite with the classical estrogen receptor is differenup thyroxine (T) from plasma and converts it locally into
from the interaction of estradiol with the receptor, and thistriiodothyronine (%), which is the active receptor-binding
interaction of 17-epiestriol with the estrogen receptor elicits &orm of thyroid hormone (450). In addition, there is enhanced
new response not shared by estradiol (252). We believe thabnversion of § to Tz in the cerebral cortex and cerebellum
future studies will identify unique effects of additional estrogenof animals with hypothyroidism (451). The prostate converts
metabolites. testosterone to dihydrotestosterone locally and it is the latter
We hypothesize that several active metabolites of estradialompound that binds to a nuclear receptor with a much higher
may exert unique effects through interaction with their ownaffinity than testosterone (452). The kidney and gut epithelium
specific intracellular receptors or effectors that are refractoryftwo major target tissues for vitamin D action) selectively
to the parent estrogen. Although the functions and structuresxpress ti-hydroxylase activity, which converts 25-hydroxyvi-
of these hypothetical intracellular receptors are unknown atamin D; (a poorly active prehormone that circulates in blood)
present, there are several candidates worthy of consideratiotn the active hormone,o,25-dihydroxyvitamin B, in target
(i) Previous studies showed the presence of multiple variantsites for hormone action (453). These examples suggest that
of the classical estrogen receptor as a result of aberrant splicingetabolism of hormones in target cells may be a general
of its mMRNA (441-444). 1t will be of interest to determine mechanism for markedly increasing the original hormone’s
whether certain active estrogen metabolites may be endogenoastivity and cellular specificity. Moreover, the enhanced enzym-
ligands for some of these variants. (ii) The nuclear type llatic conversion of T to Tz in the pituitary of rats with
estrogen binding site has a low apparent binding affinityhypothyroidism also exemplifies a metabolic control mechan-
for estradiol (445,446) and functionally mediates a growth-ism by which the body maintains homeostasis by regulating
inhibitory effect in estrogen-sensitive cells (447). Althoughthe metabolism of certain hormones in target cells (451). The
previous studies reported methgrhydroxyphenyllactate as an enzymatic conversion of androgen to estrogen by aromatase
endogenous ligand for the type Il estrogen binding site (448)is a mechanism that modifies and diversifies the original
it is not known whether physiologically active estrogen meta-hormone’s action. For instance, the hypothalamic region of
bolites are also ligands for the type Il binding site. (iii) A the brain in immature rodents converts androgens to estrogens
novel estrogen receptor expressed in rat prostate and ovalgcally by aromatase as a requisite step for male differentiation
was recently described (41). Estradiol is bound to this receptdi334,335). Thein situ conversion of testosterone to estradiol
with high affinity, and estrone and déhydroxyestradiol were by aromatase markedly alters the action of testosterone and
only moderately effective for inhibiting estradiol binding provides a source of estrogen in these aromatase-containing
(ligand competition experiments). The binding of othercells. In this case, metabolically formed estradiol interacts
estrogen metabolites to this receptor either as agonists avith its own intracellular receptor which is not responsive to
antagonists have not been determined. Itis likely that additiondts androgen precursor.
novel isoforms of the classical estrogen receptor may also By analogy with the above examples, active estrogen meta-
exist (42-45). (iv) An estrogen binding site in the plasmabolites do not need to be present in the systemic circulation
membrane has been reported (153-156) and this binding site significant quantities to exert their biological effects. The
is suspected of playing a role in the rapid release of prolactiparent hormone estradiol may exert unique functions through
in cultured GH3 pituitary tumor cells (156). Although an metabolic formation of active estrogen metabolite(s) catalyzed
earlier study suggested that 2-hydroxyestradiol can bind to hy specific metabolizing enzymes that are selectively expressed
membrane receptor site (153), the binding affinity of manyin estrogen target cells. This is a mechanism that may explain
other estrogen metabolites towards this membrane receptor iww estradiol can exert diverse, highly selective effects in
not known. (v) Several DNA sequences that encode proteingifferent target cells.
with a high degree of structural similarity to members of the ) )
steroid receptor superfamily have been identified in animal§&oncluding remarks and future perspectives
and humans (449), but their functions and endogenous ligandsstradiol is synthesized from testosterone by a cytochrome
are not known. These proteins have been called ‘orpha®450 aromatase present in the ovary and placenta and in
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Sulfates O-Methylated catechols (112,118). Modulation of oxidative xenobiotic metabolism by
Glucuronides cigarette smoking or by changing the ratio of dietary protein
Fatty acid esters P450 to carbohydrate in humans (110,260) also modulates the 2-
COMT | | Demethylase) hydroxylation of estradiol (277,457). Marked person-to-person
ST Sulfatase variations have also been observed for the enzyme systems
g:T g'“c‘“‘"“'dase that catalyze conjugative estrogen metabolism (such as
sterase Catechols sulfonation; see refs 458,459) and for tBemethylation of
catechol estrogens (see refs 422-426). Studies that identify
Multiple P450 genetic and environmental factors influencing estrogen meta-
hydroxylated (Hydroxylases) bolism at or near estrogen receptors in target cells may be of
metabolites considerable importance since these factors could profoundly

modify the biological effects of estrogens in complex manners

depending on the pathways of metabolism that are affected
and the biological activities of the metabolites that are formed.

Such effects need not be associated with an altered profile of
estrogen metabolites in the blood or urine.

Despite the widespread belief that increased exposure to
estrogens contributes to the development of human mammary
cancer, previous studies have only demonstrated a weak
association of breast cancer with high estrogen intake or with
a high circulating or urinary level of estrogen in women (251)
although an elevated exposure to estrogens or high plasma
level of estrogens is associated with a substantial increase in
the risk for endometrial cancer (12-14,17,18). We believe that
measurement of unmetabolized estrogens in plasma may be
too crude a parameter to use successfully for relating exposure

Testosterone

173-Estradiol

17B-HSD

4-Androstene-
3,17-dione

Estrone

50 ’ms'i

Sulfates Fatty acid esters

Glucuronides

Fig. 5. Complexities of estrogen metabolisdbbreviations
used: ST (sulfotransferase), GT (glucuronosyltransferase), EAT

(estrogen acyltransferase; for fatty acid ester formationy:A3D (175- of target tissues to estrogens with the risk of cancer develop-
hydroxysteroid dehydrogenase), COMT (catedBakethyltransferase) and  ment. Several concepts should be stressed which may help our
P450 (cytochrome P450). understanding of the underlying complexity of estrogen action:

(i) The levels of unmetabolized estradiol and estrone in target
certain estrogen target tissues such as brain, prostate, uterus disgues or in target cells within these tissues could be very
mammary gland. Once formed, estradiol can be metabolized tdifferent from estrogen blood levels. Previous studies reported
multiple hydroxylated products by enzymes of the cytochromehat high concentrations of both albumin and estradiol are
P450 family, and 2- and 4-hydroxylated catechol estrogemresent in human mammary tumor cells (460,461). The pres-
metabolites can b&®-methylated by catechd-methyltrans-  ence of high levels of intracellular albumin (which has high
ferase. Estradiol and its hydroxylated metabolites can also beinding affinity for estrogens) may significantly increase the
esterified to fatty acid esters or conjugated by glucuronidatiomntracellular levels of estrogens in mammary tumors. Moreover,
or sulfonation which in turn may undergo de-esterification byan active transport of estrogen in addition to passive diffusion
esterase or deconjugation Igyglucuronidase or sulfatase to may also play a role in regulating the intracellular concentra-
release active estrogens either in the liver or directly in targetions of estrogen (462). (ii) The hormonal activity of estrogens
cells. This complexity of estrogen synthesis and metabolisnean be influenced by the activity of estrogen-metabolizing
(illustrated in Figure 5) provides many potential sites for theenzymes at or near estrogen receptors. In addition, metabolic
regulation of estrogen action. formation of estrogen by aromatization of androgens and by

Earlier studies demonstrated marked person-to-person diffedeconjugation of estrogen conjugates in mammary tumor cells,
ences in the metabolism of xenobiotics by cytochrome P45@s well as in the surrounding normal glandular and adipose
enzymes (reviewed in 260,266,267,454), and these differeells may contribute to a high estrogen concentration in tumors.
ences are caused by genetic (261-267) and environment@i) The carcinogenic activity of estrogens may be mediated
(109,110,260) factors such as drug administration, tobaccor modulated by the formation of hormonally inactive or active
smoking, alcohol ingestion, pesticide exposure and dietarynetabolite(s) by specific estrogen-metabolizing enzymes in
composition. Recent studies in humans revealed a large numbrget cells. (iv) It is possible that unique biological effects of
of mutations in cytochrome P450 genes that impair xenobioti@strogen metabolites are mediated by specific receptors in
metabolism (261,262,264-267,455,456), as well as the duplicaarget cells. In such cases, the formation of specific metabolites
tion of cytochrome P450 genes that results in super-fasind the amounts of specific receptors in target cells may both
metabolism of certain xenobiotics (263). Since steroid horbe critical determinants for estrogen action.
mones are metabolized by many of the same cytochrome P4501t is of great interest that 2-methoxyestradiol was recently
enzymes that metabolize xenobiotics, changes in xenobiotidentified as an estradiol metabolite with strong activity as an
metabolism should also be reflected by an altered metabolismhibitor of cultured breast cancer cell proliferati@mvitro
of steroid hormones. There is considerable variability in theand the growth of human mammary cancer cefisiivo.
levels of cytochrome P450 3A4 and 1A2 (cytochromes P45@urther studies are needed to determine if physiologically
prominent in catalyzing 2-hydroxylation of estradiol) in differ- formed 2-hydroxyestradiol and 2-methoxyestradiol have an
ent human liver samples (up to 20-fold), and these differenceimhibitory effect on estrogen-induced carcinogenesis.
provide an explanation for large interindividual variability in  In the present review, we suggest that certain estrogen
the hydroxylation of estradiol at C-2 and at other positionsmetabolites may function as chemical mediators or as second-
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ary hormones with unique functions. We point out that estrogen?21. Ritter,J.K., Sheen,Y.Y. and Owens,|.S. (1990) Cloning and expression of

; ; ; ; ; human liver UDP-glucuronosyltransferase in COS-1 cells. 3,4-catechol
metabolism via multiple pathways can occur in ta_rget .tlssues estrogens and estriol as primary substrajesBiol. Chem,. 265 7900—
at or near estrogen receptors. Estrogen metabolism in target -gog°
tissues not only alters the intensity of estrogen action but may22. zhu,B.T., Suchar,L.S., Huang,M.-T. and Conney,A.H. (1996) Similarities
also alter its profile of physiological effects. Many factors  and differences in the glucuronidation of estradiol and estrone by UDP-
modulate the levels of estrogen-metabolizing enzymes in liver 9lucuronosyltransferase in liver microsomes from male and female rats.

. - . . Biochem. Pharmacql51, 1195-1202.
and in target tissues, and the biological effects of an esm)gerﬁ& Brooks,S.C. and Horn,L. (1971) Hepatic sulfonation of estrogen

will depend on the profile of multiple metabolites formed and  metabolitesBiochim. Biophys. Acta231, 233-241.

the biological activities of each of the metabolites. We believe 24.Payne, AH. and Singer,S.S. (1979) The role of steroid sulfatase and
that research on factors that influence the synthesis and sulfotransferase enzymes in the metabolism of &hd Gg steroids. In
metabolism of estradiol and its metabolites by diverse pathways HoPKIk.R. (ed.)Steroid Biochemistiyvol I. CRC Press, Boca Raton,

; : S FL, pp. 111-145.
at or near receptors in target cells is an underexplored area iBs Hopbirk,R. (1985) Steroid sulfotransferases and steroid slfate sulfatases:

need of more attention. Research in this area may lead to an Characteristics and biological role€an. J. Biochem. Cell Bigl.63,
enhanced understanding of estrogen action and to the discovery 1127-1144.
of pharmacologically active agents that are useful for the 6. Watanabe,K., Takanashi,K. and Yoshizawa,l. (1988) Determination of

i d treat t of est ind d estradiol-17-sulfate in human urine by a direct radioimmunoassay: urinary
prevention and treatment or estrogen-inducea cancers. levels throughout the menstrual cyciteroids 52, 123-136.

27.Hernandez,J.S., Watson,R.W.G., Wood,T.C. and Weinshilboum,R.M.
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